Sediment Quality in BMPs

Amanda Vandermark, St. John Fisher College Advisor: Dr. Randy Chambers, REU 2007

Overview

Brief Background Significance of the Study Big Question Hypothesis Methods/Sample Size Sediment Sample Analysis Results Conclusions Questions for Further Research

Background

Rapid Development

Impervious Surface

↓

2000

Increase pond Area

Big Question

How does the environment in which a retention pond is built affect the sediment chemistry?

Impacting Factors: **Impervious Surface** Pond Area Runoff Area Pond Age

Original Hypothesis

 As the amount of impervious surface increases, nutrient runoff increases resulting in higher levels
of biogenic silica and algal activity found at BMPs.

Digitizing with GIS

Pond AreaRunoff AreaImpervious Surface

Distribution of Pond Selection

Date Constructed	Age	Sample Size	Classification	
2007-2000	1 - 7yrs	12	Young Ponds	
1999-1996	8-12yrs	4	Middle Ponds	
1996-1987	13-19yrs	9	Old Ponds	
<1987	20+	5	Omitted Ponds	
%Impervio	ous	1		
10-15%		3	Sensitive Streams	
15-25%		12	Impacted Streams	
25-40%		8	Non-Supportive Streams	
40-60%		5		
60-100%		1		

Sample Size

30 classified wet ponds 3 samples from each outlet

top 2cm of sediment measured with the calibrated corer

Analysis

C:N RatioElemental Analyzer

Silica Extraction and Analysis
modification of DeMaster (1981)

Phosphorus TestPhosphate Analysis Protocol

Organic MatterAs loss on ignition

Results

Nutrient Ranges

Element	Low	High
%P	0.00034	0.01999
%N	0.00	1.23
%H	0.04	2.31
% C	0.17	16.26
%BSi	0.093	0.143
% O. M	0.87	36.93

C:N:P 106:16:1 Redfield's Ratio for Algae 1195:57:1 My Found Ratio

*More carbon per mole of nitrogen. Possible reason for such a high level of carbon is due to the leaf litter, plants, and woody materials on the floor of the ponds.

Principal Components Analysis

Component Matrix^a

	Component	
	1	2
Pond_Age	.127	.807
Pond_Area_ squaremeters	.933	.041
impervious_percentage	288	.635
Runoff_Area_ squaremeters	.907	.272

Component 1- Surface Area of the Ponds Component 2- Age in Relation to Impervious Cover

Component Matrix^a

Extraction Method: Principal Component Analysis.

a. 2 components extracted.

Component 1- Organic Matter and Terrestrial Material Component 2- Biogenic Silica

	Component	
	1	2
AVG_OrganicMatter_	956	010
AVG Carbon percentage	.912	043
AVG_Nitrogen_ percentage	939	124
AVG_Phosphorus_ percentage	.721	.402
AVG_BSi_percentage	131	.954

Extraction Method: Principal Component Analysis.

a. 2 components extracted.

Correlations

		LargerPonds_ increasedRO	Younger Ponds_ increased Impervious
Nutrients	Pearson Correlation	040	058
	Sig. (2-tailed)	.851	.784
	Ν	25	25
BSi_increase_CN.	Pearson Correlation	197	.699**
OM.decrease	Sig. (2-tailed)	.344	.000
	Ν	25	25

** \cdot Correlation is significant at the 0.01 level (2-tailed).

Conclusion

Even in ponds where there were obvious signs of nutrient runoff, levels of nitrogen and phosphorus were consistently low.

Although a wide range of BSi concentrations weren't found across the sampled ponds, trends showed that younger ponds with the most impervious cover had the highest percentage of BSi in the sediment.

Questions for Further Study

What are the BSi percentages of sediment downstream of the retention ponds?

How would the results change if more variables were kept constant?

