Storm Water Management Evaluating Pointe at Jamestown BMP

Michael Passarello College of Charleston REU Summer Program 2007

Faculty Adviser: Dr. Greg Hancock

Objectives

- Determine whether the peak inflows, peak outflows, centroid lag times, and runoff coefficients agree with design and regulations
- Compare pond dimensions and volumes with design and EPA recommendations
- Determine if there are any negative impacts on streams downstream of BMP's

Methodology – Flow Evaluation

- Determine pond elevation from pressure transducer and staff gauge
- Rain gauge data
- Use pond elevations to calculate flows in and out of BMP
- Salt Dilution Method as an indicator of "actual discharge"

Methodology – Surveying

Survey Data

Pointe Pond Volume

 $y = -43.316x^{3} + 4851.3x^{2} - 87588x + 416503$ $y = -82.327x^{3} + 6406.5x^{2} - 111440x + 552165$

Survey Data Summary

Based on Design

- Water Quality Requirements: 48,134 ft³
- Water Quantity **Requirements**: 109,844 ft³
- Total Storage Required: 157,978 ft³
- Water Quality Volume **Provided**: 72,063 ft³
- Water Quantity Volume Provided: 115,857 ft³
- Total Storage Provided: 187,920 ft³

Based on Survey

- Water Quality Volume: 67,481.99 ft³
- Water Quantity Volume: 94,403.94 ft³
- Total Storage: 161,885.9 ft³
- Wet Storage Difference: 4,581.01 ft³
- Dry Storage Difference: 21,453.06 ft³
- Total Storage Difference: 26,034.07 ft³
- Wet Storage Difference: 6.4%
- Dry Storage Difference: 18.5%
- Total Storage Difference: 13.9%
- Water Quantity Requirements short 15,440.06 ft³

EPA Design Recommendations

	EPA Recommendations	Pointe Results
Pond Depth	3-9 feet for permanent pool	2.24 ft
Area Ratio	Less than 100	49.22
Length/Width Ratio	At least 2:1	4.77:1

Hydrologic Performance

- •<u>Peak Inflow</u> maximum volumetric discharge into the pond
- •<u>Peak Outflow</u> maximum volumetric discharge out of pond
- •<u>Centroid Lag</u> time between peak inflow and peak outflow
- •<u>Runoff Coefficient</u> ratio of total surface runoff to total runoff into pond
- •<u>Salt Dilution</u> method for measuring volumetric discharge from BMP at a given staff gauge height

Runoff Coefficient vs Rainfall

Rosgen – Stream Classification

Problems

- Identifying Bankfull
- In incised streams, "bankfull" is really meant to refer to the "dominant" flow that sets the channel size

Stream Classification

Qualitative Analysis Streams with BMP's at the headwater appear more incised and entrenched

 Streams with recently installed BMP's contain dense root exposure and undercutting

Conclusions

Hydrologic Performance

Greater Peak Inflows than predicted

- Greater Peak Outflows than predicted
- Centroid Lag time consistent with design and regulation
- Underestimated Runoff Coefficient may explain why there are greater inflows and outflows

- Stream Classification
 - Difficult to apply Rosgen Method to incised streams
 - BMP's are not effective toward protecting streams
- Pond Dimensions
 - Less dry storage than needed may explain the greater outflows
 - Pond is adequate for sediment settlement but may not be efficient in water quality