
THE NEW YORK AFRICAN BURIAL GROUND:

Unearthing the African Presence in Colonial New York

Volume 1

THE NEW YORK AFRICAN BURIAL GROUND:

Unearthing the African Presence in Colonial New York

Volume 1

The Skeletal Biology of the New York African Burial Ground Part 1

Michael L. Blakey and Lesley M. Rankin-Hill Editors

HOWARD UNIVERSITY PRESS

WASHINGTON, D.C. 2009

Published in association with the United States General Services Administration

Skeletal Biology of the African Burial Ground, Part 1, is the revised version of Skeletal Biology Final Report, Volume 1 (2004), and was posted on the World Wide Web at http://www.africanburialground.gov/ABG_FinalReports. htm. Skeletal Biology of the African Burial Ground, Part 1, will be posted on the Web site of the National Park Service at http://www.nps.gov.

Application has been filed for Library of Congress registration.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the U.S. General Services Administration or Howard University.

Published by Howard University Press
2225 Georgia Avenue NW, Suite 720
Washington, D.C. 20059
18 17 16 15 14 13 12 11 10 09 1 2 3 4 5
ISBN 0-88258-252-6
978-0-88258-252-8

Howard University's New York African Burial Ground Project was funded by the U.S. General Services Administration under Contract No. GS-02P-93-CUC-0071

Technical editing and graphics support by Statistical Research, Inc. Layout and design by Simpson & Convent.

Typeset and printed in the United States of America. Printed on acid-free paper.

Cover Images:

Detail of the Maerschalk Plan (Francis Maerschalk, 1754)

Artifacts from the New York African Burial Ground (Photographs by Jon Abbott):

Enameled cuff link face, Burial 371, Catalog No. 1875–B.001.

Bead Type 12, Burial 340, Catalog No. 01651-B.79.

Oval turquoise enamel face, Burial 211, Catalog No. 1186 -B.001.

Pins, Burial 12, Catalog Nos. 253-B.001, .002.

Ring, copper alloy with glass insets, Burial 310, Catalog No. 1486-B.001.

Bead Type 9, Burial 340, Catalog No. 01651-B.78.

Bead Type 15, Burial 340, Catalog No. 01651-B.75.

Button, bone, turned. Burial 171, Catalog No. 931-B.002.

Cast silver pendant, Burial 254, Catalog No. 1243–B.001.

Burial 335 (Photography by Dennis Seckler)

Cover design by Star Bullock + Associates, Mark A. Bartley

Contributors

PROJECT DIRECTOR AND SCIENTIFIC DIRECTOR

Michael L. Blakey, Ph.D.

LABORATORY DIRECTOR AND OSTEOLOGIST

Mark E. Mack, M.A.

OFFICE MANAGER AND ADMINISTRATIVE ASSISTANT

Reba Brewington, B.A.

OSTEOLOGIST

M. Cassandra Hill, M.A., Ph.D.*

OSTEOLOGICAL TECHNICIANS

Autumn Barrett, M.A., A.B.D.*

Allison Davis

Reynard Davis (deceased)

Ena Fox

Shannon Mahoney, M.A., A.B.D.* Susan Good-Null, M.A., Ph.D.*

Monde Imoh, Ph.D.

Christopher Null, M.A., A.B.D.*

Kenya Shujaa, M.A.*

Rachel Watkins, M.A., Ph.D.*

OSTEOLOGICAL TECHNICIAN ASSISTANTS

Valarian Abrams Paula Allen Marc Alston Darious Annis Augustus Billy Alan Blanc Antonia Christian Jeffrey Coleman

Lauren Collins

Cyndi Douglas Jacinta Elder-Arrington

Nardos Fessaha, Ph.D.*

April Flint

Gabriel Franke, M.A.

Paul Gattis

Oumuyiwa Gbadegesin Richlyn Goddard, Ph.D.

Karyn Goodwin Yasin Gregg Janna Gruber Fayola Herod Michael Hunter Keisha Hurst

Joseph Jones, M.A.*, A.B.D.*

Antoinette Kearney Irina Koretsky, M.S. Dannette Lambert

Teresa Leslie, M.A.,* Ph.D.* Arion Mayes, M.A., Ph.D.*

Moses Nwulia Auriel Perkins Keisha Rankine Clifford Russell Joann Sampson Jobita Smith

Azhar Talibi, M.A., M.D.*

Brent Terry, M.A. Emile Webster Shani Wright

RESEARCH ASSISTANTS

Pamela Brown Songhai Carter Christa Dickey Lesley Payne Arana Hankin Nicole Harvey Jeffrey Lim Chad Taylor Walidah West

SENIOR MEDICAL PHOTOGRAPHER

Otto Edwards

DATA SYSTEMS MANAGER

Douglas Fuller, M.A. Javier Urcid, Ph.D. Christopher Null

SECRETARIES

Denise Joseph Marna Lewis Andrea Reid Raquel Scott Percival Taylor

Sharon Wiltshire

BOTANISTS

Lafayette Frederick, Ph.D. Monde Emoh, Ph.D.

CONSULTANTS FOR THIS REPORT

Richard Kittles, Ph.D. Matthew George, Ph.D. Thomas Stafford, Ph.D. Shomarka O.Y. Keita, M.S., M.A., M.D.

AFRICAN BURIAL GROUND PROJECT DIRECTORS

Michael L Blakey, Ph.D., Scientific Director, College of William and Mary, and Howard University Edna Medford, Ph.D., Associate Director for History, Howard University

Sherrill D. Wilson, Ph.D., Director, Office of Public Education and Interpretation

Alan H. Goodman, Ph.D., Associate Director for Chemical Studies, Hampshire College

Jean Howson, Ph.D., Archaeology Laboratory Director, Howard University

Fatimah L. C. Jackson, Ph.D., Associate Director for Genetics, University of Maryland

Mark E. Mack, M.A., Cobb Laboratory Director, Howard University

Warren Perry, Ph.D., Associate Director for Archaeology, Central Connecticut State University

Lesley M. Rankin-Hill, Ph.D., Associate Director for Skeletal Biology, University of Oklahoma Warren Barbour, Ph.D., Associate Director (1992–1994)

AFRICAN BURIAL GROUND PROJECT ADMINISTRATION/MANAGEMENT

O. Jackson Cole, Ph.D., Executive in Charge, Howard University James A. Donaldson, Ph.D., Project Manager, Howard University

^{*}Degree received post-recordation.

Contents

List of Figures	X
List of Tables	XVI
Foreword	XX
Editorial Method	
Acknowledgments	
Acknowledgments	ΛΑ ν
Section I: Background of the New York African Burial	Ground Project
1. Introduction	
by Michael L. Blakey	3
Historic Background and Significance of the Cemetery	3
Recent Public Significance of the African Burial Ground	8
Significance of the Project's Analytical Approach	10
Report Scope, Limitations, and Future Directions	15
Organization of the Report	16
2. History and Comparison of Bioarchaeological Studies in the African Dias	oora
by Michael L. Blakey	
Origins of African Diaspora Studies	
Physical Anthropology and the Negro	
Conception of African Diaspora Archaeology	
The Birth of African American Bioarchaeology	
3. Theory: An Ethical Epistemology of Publicly Engaged Biocultural Researc	h
by Michael L. Blakey	41
Critical Theory	42
Public Engagement	42
Multiple Data Sets	45
Diasporic Scope	46
4. Laboratory Organization, Methods, and Processes	
by M. L. Blakey, M. E. Mack, K. J. Shujaa, and R. Watkins	49
Laboratory Organization	49
Facilities and Environment	49

Personnel	42
Project and Scientific Director	50
Laboratory Director/Osteologist	50
Office Manager/Administrative Assistant	50
Osteologist	50
Osteological Technicians (Four Simultaneous Positions)	50
Osteological Technician Assistants (up to 12 Simultaneous Positions)	51
Medical Photographers	51
Data Systems Manager:	51
Botanist (Two Positions)	51
Conservators (Two Positions, as Needed)	52
Consultants and Specialists (Several Positions)	52
Secretary	52
Burial Processing and Methodology	52
Cleaning and Reconstruction	52
Data Collection and Skeletal Assessment	54
Sex Determination	55
Age Determination	56
Dental Assessment	60
Assessment of Bone Pathology	61
rissessificate of Borie Futitoring,	
Sectioned Bone Samples	63
5,	64
Sectioned Bone Samples	ork Geographical and
Sectioned Bone SamplesSkeletal CurationSkeletal CurationSection II: Origins and Arrival of Africans in Colonial New Your State of Colonial New York African Burial Ground Population: Biological Evidence of Macroethnic Affiliations Using Craniometrics, Dental Morphology, and Preliminary G	ork Geographical and enetic Analyses
Sectioned Bone Samples Skeletal Curation Section II: Origins and Arrival of Africans in Colonial New Your Science of Colonial Science Of Colonia	ork Geographical and enetic Analyses
Sectioned Bone Samples Skeletal Curation Section II: Origins and Arrival of Africans in Colonial New Young Section II: Origins and Arrival Ground Population: Biological Evidence of Macroethnic Affiliations Using Craniometrics, Dental Morphology, and Preliminary Gold by F. L. C. Jackson, A. Mayes, M. E. Mack, A. Froment, S. O. Y. Keita, R. A. Kittles, M. George, K. J. Shujaa, M. L. Blakey, and L. M. Rankin-Hill	Geographical and enetic Analyses
Sectioned Bone Samples	Geographical and enetic Analyses 69 69 70
Sectioned Bone Samples Skeletal Curation Section II: Origins and Arrival of Africans in Colonial New Young Section II: Origins and Arrival Ground Population: Biological Evidence of Macroethnic Affiliations Using Craniometrics, Dental Morphology, and Preliminary Gone by F. L. C. Jackson, A. Mayes, M. E. Mack, A. Froment, S. O. Y. Keita, R. A. Kittles, M. George, K. J. Shujaa, M. L. Blakey, and L. M. Rankin-Hill Introduction and Theoretical Perspectives. Database Limitations, Research Strategies, and Historical and Evolutionary Contexts.	
Sectioned Bone Samples Skeletal Curation Section II: Origins and Arrival of Africans in Colonial New Your Science of Macroethnic Affiliations Using Craniometrics, Dental Morphology, and Preliminary Gone by F. L. C. Jackson, A. Mayes, M. E. Mack, A. Froment, S. O. Y. Keita, R. A. Kittles, M. George, K. J. Shujaa, M. L. Blakey, and L. M. Rankin-Hill Introduction and Theoretical Perspectives Database Limitations, Research Strategies, and Historical and Evolutionary Contexts	
Section II: Origins and Arrival of Africans in Colonial New Your Section II: Origins and Arrival of Africans in Colonial New Your Strategies, and Historical and Evolutionary Contexts	
Sectioned Bone Samples Skeletal Curation Section II: Origins and Arrival of Africans in Colonial New Your State of the New York African Burial Ground Population: Biological Evidence of Macroethnic Affiliations Using Craniometrics, Dental Morphology, and Preliminary Government, S. O. Y. Keita, R. A. Kittles, M. George, K. J. Shujaa, M. L. Blakey, and L. M. Rankin-Hill Introduction and Theoretical Perspectives Database Limitations, Research Strategies, and Historical and Evolutionary Contexts Research Questions Research Background Synopsis Craniometric Assessments	
Section II: Origins and Arrival of Africans in Colonial New Your Section II: Origins and Arrival of Africans in Colonial New Your Section II: Origins and Arrival of Africans in Colonial New Your Section II: Origins of the New York African Burial Ground Population: Biological Evidence of Macroethnic Affiliations Using Craniometrics, Dental Morphology, and Preliminary George, No. 1. C. Jackson, A. Mayes, M. E. Mack, A. Froment, S. O. Y. Keita, R. A. Kittles, M. George, K. J. Shujaa, M. L. Blakey, and L. M. Rankin-Hill	
Section II: Origins and Arrival of Africans in Colonial New Your Section II: Origins and Arrival of Africans in Colonial New Your Section II: Origins and Arrival of Africans in Colonial New Your Section II: Origins of the New York African Burial Ground Population: Biological Evidence of Macroethnic Affiliations Using Craniometrics, Dental Morphology, and Preliminary George, II. C. Jackson, A. Mayes, M. E. Mack, A. Froment, S. O. Y. Keita, R. A. Kittles, M. George, K. J. Shujaa, M. L. Blakey, and L. M. Rankin-Hill	
Sectioned Bone Samples Skeletal Curation Section II: Origins and Arrival of Africans in Colonial New Your State of the New York African Burial Ground Population: Biological Evidence of Macroethnic Affiliations Using Craniometrics, Dental Morphology, and Preliminary Graniometrics, Dental Morphology, and Preliminary Graniometrics, Dental Morphology, and Preliminary Graniometric Assessments. Introduction and Theoretical Perspectives. Database Limitations, Research Strategies, and Historical and Evolutionary Contexts. Research Questions Research Background Synopsis. Craniometric Assessments Dental-Trait Variants Molecular Genetics Methods, Data, and Results.	
Sectioned Bone Samples Skeletal Curation Section II: Origins and Arrival of Africans in Colonial New Your Statistical Analysis Section II: Origins and Arrival of Africans in Colonial New Your Skeletal Curation Section II: Origins and Arrival of Africans in Colonial New Your Skeletal Curation Section II: Origins and Arrival of Africans in Colonial New Your Statistical Analysis Section II: Origins and Arrival of Africans in Colonial New Your Statistical Analysis Section II: Origins and Arrival of Africans in Colonial New Your Skeletal Statistical Analysis Section II: Origins and Arrival of Africans in Colonial New Your Statistical Analysis Section II: Origins and Arrival of Africans in Colonial New Your Statistical Analysis Section II: Origins and Arrival of Africans in Colonial New Your Statistical Analysis Section II: Origins and Arrival of Africans in Colonial New Your Statistical Analysis Section II: Origins and Arrival of Africans in Colonial New Your Statistical Analysis Section II: Origins and Arrival of Africans in Colonial New Your Statistical Arrival of Africans in Co	
Sectioned Bone Samples Skeletal Curation Section II: Origins and Arrival of Africans in Colonial New Your Science of Macroethnic Affiliations Using Craniometrics, Dental Morphology, and Preliminary General Morphology, M. L. Blakey, and L. M. Rankin-Hill Introduction and Theoretical Perspectives Database Limitations, Research Strategies, and Historical and Evolutionary Contexts Research Questions Research Background Synopsis Craniometric Assessments Dental-Trait Variants Molecular Genetics Methods, Data, and Results Craniometrics Statistical Analysis Results Dental Morphology	
Section II: Origins and Arrival of Africans in Colonial New Your Scenario Section II: Origins and Arrival of Africans in Colonial New Your Scenario	
Sectioned Bone Samples Skeletal Curation Section II: Origins and Arrival of Africans in Colonial New Yo 5. Origins of the New York African Burial Ground Population: Biological Evidence of Macroethnic Affiliations Using Craniometrics, Dental Morphology, and Preliminary G by F. L. C. Jackson, A. Mayes, M. E. Mack, A. Froment, S. O. Y. Keita, R. A. Kittles, M. George, K. J. Shujaa, M. L. Blakey, and L. M. Rankin-Hill Introduction and Theoretical Perspectives. Database Limitations, Research Strategies, and Historical and Evolutionary Contexts. Research Questions Research Background Synopsis Craniometric Assessments Dental-Trait Variants Molecular Genetics Methods, Data, and Results. Craniometrics Statistical Analysis. Results Dental Morphology Dental Morphology Dental Comparison of New York African Burial Ground Individuals with Populations of the World Molecular Genetic Assessments	
Section II: Origins and Arrival of Africans in Colonial New Your Scenario Section II: Origins and Arrival of Africans in Colonial New Your Scotting of the New York African Burial Ground Population: Biological Evidence of Macroethnic Affiliations Using Craniometrics, Dental Morphology, and Preliminary Governous By F. L. C. Jackson, A. Mayes, M. E. Mack, A. Froment, S. O. Y. Keita, R. A. Kittles, M. George, K. J. Shujaa, M. L. Blakey, and L. M. Rankin-Hill. Introduction and Theoretical Perspectives. Database Limitations, Research Strategies, and Historical and Evolutionary Contexts. Research Questions Research Background Synopsis Craniometric Assessments Dental-Trait Variants Molecular Genetics Methods, Data, and Results. Craniometrics Statistical Analysis. Results Dental Morphology Dental Morphology Dental Comparison of New York African Burial Ground Individuals with Populations of the World	

1995–1997 Protocol Results	86
1998–1999 Protocols for Genetic Analyses of the New York African Burial Ground Sample	86
1998–1999 Protocol Results	
1999 Protocols for Genetic Analyses of the New York African Burial Ground Sample	87
1999 Protocol Results	88
Genetic Initiatives and Protocols for 2000–2004	89
Summary of Planned Future Analyses and Proposed Timetable	92
6. Isotopic and Elemental Chemistry of Teeth: Implications for Places of Birth, Forced	Migration Patterns,
Nutritional Status, and Pollution	
by A. H. Goodman, J. Jones, J. Reid, M. E. Mack, M. L. Blakey, D. Amarasiriwardena,	
P. Burton, and D. Coleman	95
Introduction	95
Tooth Development and Chemistry	97
The Histology and Development of Dental Calcified Tissues	98
Enamel	98
Dentin	98
Cementum	99
Instrumentation and Methods of Analysis	100
Instrumentation and Coordination of Samples	100
The Chemical Tool Kit	101
Strontium and Barium	101
Zinc and Iron	102
Carbon and Nitrogen Isotopes	102
Elemental Signature Analysis	102
Strontium Isotopes	103
Oxygen Isotopes	104
Lead, Lead Isotopes and Heavy Metal Pollution	105
Methods and Results	105
African Cultural Modification of Teeth	105
Materials and Methods	109
Sample Selection and Preparation	109
Sample Collection and Analysis	110
Results	110
Strontium Isotope Ratios	114
Methods and Materials	114
Results	114
Enamel	114
Dentin vs. Enamel	115
Enamel Strontium Isotopes Ratios Compared to Elemental Signature Analysis	
Enamel Lead Content	
Conclusions	117
Acknowledgements	110

7. Demographic Overview of the African Burial Ground and Colonial Africans of New by L. M. Rankin-Hill, M. L. Blakey, J. E. Howson, S. D. Wilson, E. Brown, S. H. H. Carrington and K. J. Shujaa	η,
Introduction	
Paleodemography	
New York African Burial Ground Skeletal Sample	
Mortality	
Adult Mortality	
Subadult Mortality	
Historical Demography of Africans in Early New York	
Age and Sex Structure	
Sex Ratio	
Comparisons with the New York Colonial Europe	
Comparative Skeletal Biological Studies of the African Diaspora	
Newton Plantation, Barbados, West Indies	
St. Peter Street Cemetery, Louisiana	
Catoctin Furnace, Maryland	
38CH778, South Carolina	
First African Baptist Church (1821–1843), Philadelphia, Pennsylvania	
Cedar Grove, Arkansas	
Mean Age at Death	133
Mortality	134
Survivorship and Life Expectancy	134
Life Expectancy	135
Summary of Findings for the New York African Burial Ground Sample	139
Paleodemography	139
Historical Demography	139
Colonial Comparison	139
Skeletal Biological Comparisons	139
Section III: Life and Death in Colonial New York	
8. Childhood Health and Dental Development	
by M. L. Blakey, M. E. Mack, A. R. Barrett, S. S. Mahoney, and A. H. Goodman	
Materials and Methods	
Results	
Dental Enamel Hypocalcification	
Conclusions	156
9. Odontological Indicators of Disease, Diet, and Nutrition Inadequacy	
by M. E. Mack, A. H. Goodman, M. L. Blakey, and A. Mayes	
Sampling	
Infectious Pathology	
Genetic Dental Pathology	
Subadult Dentition	164

Adult Dentition	165
Conclusions	
10. Osteological Indicators of Infectious Disease and Nutritional Inadequacy	
by C. C. Null, M. L. Blakey, K. J. Shujaa, L. M. Rankin-Hill and S. H. H. Carrington	169
Introduction	169
Infectious Disease	174
Nutritional Inadequacy	185
Interaction of Infectious Disease and Nutritional Inadequacy	195
Conclusion	197
11. Skeletal Indicators of Work: Musculoskeletal, Arthritic and Traumatic Effects	
by C. Wilczak, R. Watkins, C. C. Null, and M. L. Blakey	199
Sample Analyzed	199
Degenerative Changes of the Joints	200
Scoring	200
Results of the Vertebral Analysis	200
Schmorl's Nodes	204
Spondylolysis	206
Results of Appendicular Joint Analysis	208
Musculoskeletal Stress Markers	213
Scoring of MSMs	213
Results of MSM Analysis	214
Comparisons with other Enslaved Populations	219
Conclusions	221
Trauma	221
Dislocation	221
Fracture scoring	222
Results of Fracture Analysis	222
Subadult fractures	223
12. Subadult Growth and Development	
by S. K. Goode-Null, K. J. Shujaa, and L. M. Rankin-Hill	227
Methodology	228
Criteria for Baseline Sample Size	228
Growth	228
Long-Bone Length Standardization	229
Stature	230
Development	234
Analysis	235
Growth Assessment	235
Standardized Long-Bone Measures	235
Stature Estimates	237
Pathological Assessments	240
Nutritional and General Infection Indicators	240
Nutritional Indicators	240

X • CONTENTS

Generalized Lesions of Infection	242
Abnormal Bone Morphology	244
Biomechanical Stress Indicators	245
Craniosynostosis	247
Discussion	247
Conclusion	252
13. The Political Economy of Forced Migration: Sex Ratios, Mortality, Population Growth among Africans in Colonial New York	·
by M. L. Blakey, L. M. Rankin-Hill, J. E. Howson, S. D. Wilson, and S. H. H. Carrington	
The Trade in African Captives	
Age Selection	
Sex Selection and the Sex Ratio	
Mortality	
New York African Burial Ground Mortality	
Nineteenth-Century New York Trends	
Population Growth and Fertility	263
Sex Ratio and Mortality	264
Fertility	264
Child-To-Woman Ratios	264
Paleopathology	265
14. Discussion	
by M. L. Blakey, L. M. Rankin-Hill, A. H. Goodman, and F. L. C. Jackson	269
The Main Findings of Our Study	269
New Problems and Solutions	271
References	275
Inday	217

List of Figures

Chapter 1	
Figure 1. Early archaeological excavation of the African Burial Ground	4
Figure 2. Map of the eighteenth-century African Burial Ground, Maerschalck Plan (1755) in African Burial Ground and The	
Commons Historic District Designation Report, New York Landmarks Preservation Commission, February 1993	4
Figure 3. Trinity Church in lower Manhattan today	5
Figure 4. Rib ends from Burial 137 showing likely heat-induced darkening	6
Figure 5. Burial 323: transverse section of calvarium (top of skull)	7
Figure 6. Burial 323: magnified saw marks	8
Figure 7. Mayor David Dinkins (<i>center</i>), Peggy King Jorde (Mayor's Liaison), and Howard Dodson (Chief, Schomburg Center)	
(front) are briefed on the excavation by Michael Parrington (Principal Archaeologist for HCI and John Milner Associates)	11
Figure 8. Night Procession of the Ties That Bind Ceremony at Howard University marking the transfer of the African Burial	
Ground ancestral remains to an African Diasporic cultural and research institution in November of 1993	13
Chapter 2	
Figure 9. W. Montague Cobb with a pathological cranium from his documented anatomical collection at Howard University	27
Chapter 4	
Figure 10. Work space in the main "blue" laboratory	50
Figure 11. Data Systems Manager Douglas Fuller and Project Director Michael Blakey discuss organization of the database	
Figure 12. Cobb Laboratory staff	
Figure 13. Safety while unwrapping burials	53
Figure 14. OTA Joseph Jones involved in cleaning and reconstruction	53
Figure 15. Allison Davis and Keisha Hurst take anthropometric measurements	54
Figure 16. Comparative male and female pelvic shapes	56
Figure 17. Geriatric left mandible for which long-standing toothlessness has obliterated most evidence of dental "sockets"	
(Burial 209)	56
Figure 18. Cranium of infant 1—2 years of age (Burial 252)	57
Figure 19. Child 5–7 years of age (Burial 39)	
Figure 20. Mandible of 9–10-year-old child with permanent teeth in various stages of eruption compared with a dental	
aging chart (Ubelaker 1989) showing ages associated with different eruption stages	58
Figure 21. Deciduous teeth are shown in gray; permanent teeth are shown in white	
Figure 22. Unfused epiphysis comprising the immature head of the femur of a 3—5-year-old (Burial 138)	58

Figure 23. Unfused epiphysis of a juvenile distal femur compared to a fully fused adult epiphysis	58
Figure 24. Elderly woman 50–60 years of age (Burial 40)	
Figure 25. Pubic symphysis of a 45—50-year -old male (Burial 20) and Todd's 10 typical phases of age in the pubic symph	
Figure 26: Bar graph representing sex and age at death using average ages for the 301 individuals observable for age	•
and/ or sex	60
Figure 27. Laboratory Director Mark Mack conducts dental recordation	61
Figure 28. Barely discernable porotic hyperostosis	63
Figure 29. Clearly present porotic hyperostosis	63
Figure 30. Photographer Jerome Otto Edwards and Osteologist M. Cassandra Hill photographing cranium	64
Figure 31. African American Ife Shrine in the Cobb Laboratory	65
Chapter 5	
Figure 32. Major African exit points for enslaved individuals bound for New York in the seventeenth and eighteenth centu	ıry72
Figure 33. Exit regions for enslaved Africans bound for New York, Central and South America, and the Caribbean in the seventeenth and eighteenth centuries	73
Figure 34. New York African Burial Ground skull shape analysis (Mahalanobis Distance)	
Figure 35. Scatter plot of craniometric distance	
Figure 36. Worldwide populations based on 23 crown and root traits (Scott and Turner 1997)	
Figure 37. New York African Burial Ground compared to other world populations based on 23 crown and root traits	
(Scott and Turner 1997)	83
Figure 38. New York African Burial Ground compared to other African populations and Western Europe based on 23 crown	n
and root traits (Scott and Turner 1997)	83
Figure 39. New York African Burial Ground compared to other African populations based on 23 crown and root traits (Scott and Turner 1997)	84
Chantay 6	
Chapter 6 Figure 40. Elemental Uptake/Deposition Model	06
Figure 41. Longitudinal cross section of a permanent upper left first molar showing enamel, dentine, and cementum	
Figure 42. Outridge Pb counts	
Figure 43. Dremel Drill drilling (Burial 266, LRM1)	
Figure 44. Price et al. diagram of Sr flow	
Figure 45. Broad geographic pattern of strontium isotope distribution	
Figure 46. Raster ablation (Burial 23, URM1)	
Figure 47. ESA Cluster Diagram	
Figure 48. Strontium Isotopes Chart	
Figure 49. Lead variation	
Chapter 7	
Figure 50. New York African Burial Ground mortality	122
Figure 51. New York African Burial Ground mortality by sex and age	123
Figure 52. Adult mortality NYABG and Trinity Church	129
Figure 53. Mortality NYABG and Trinity Church by sex and age	130
Figure 54. Subadult mortality NYARG and Trinity Church	131

Figure 55. Survivorship	137
Figure 56. Life expectancy	
Chapter 8	
Figure 57. Linear enamel hypoplastic lesions in the anterior maxillary permanent dentition in a female aged 20—25 years (Burial 1)	144
Figure 58. Bands of discoloration caused by hypocalcification in the anterior maxillary permanent dentition in a 24–32 year-old female (Burial 51) (<i>left</i>); magnification (<i>right</i>).	
Figure 59. Deciduous mandibular dentition with a single non-linear hypoplastic pit in the right canine of a subadult aged 3—5 years (Burial 7); individual also appears to have been anemic	
Figure 60. Permanent mandibular canine and lateral incisor with linear hypoplasia in a male aged $35-45$ years (Burial 9) Figure 61. NYABG presence of hypoplasia by age (n = 99)	146
Figure 62. NYABG hypoplasia in third molars (n = 111)	150
Chapter 9	
Figure 64. Diagenic staining affecting dentition in a 55—65-year-old female (Burial 241)	158
Figure 65. Examples of the photographic record (Burial 95, a subadult aged 7—12 years)	
Figure 66. Total number of carious teeth by sex	
Figure 67. Molar caries in a male aged 26–35 years (Burial 101)	163
Figure 68. Abscessing in a female aged 25–35 years (Burial 266)	163
Figure 69. Caries formation in a female aged 35–40 years (Burial 107)	163
Figure 70. Total number of teeth affected by caries in subadults	164
Figure 71. Caries, abscessing, and enamel hypoplasia in a subadult aged 5—7 years (Burial 39)	164
Figure 72. Radiograph of incisor hypodontia in a subadult aged 4—6 years (Burial 17)17	167
Figure 73. Dental crowding in a subadult aged 5–7 years (Burial 39)	167
Figure 74. Maxillary molar agenesis in a male aged 20–24 years (Burial 176)	167
Figure 75. An example of a supernumerary tooth in a female aged 35–45 years (Burial 12)	168
Chapter 10	
Figure 76. Active periostitis on left posterior ulna of a 35—45-year-old male (Burial 70)	
Figure 77. Active periostitis on left posterior ulna of a 35—45-year-old male, magnified (Burial 70)	
Figure 78. Healed, sclerotic periostitis on right lateral tibia of an adult male (Burial 69)	172
Figure 79. Healed, sclerotic periostitis on left lateral tibia of a 45–50-year-old male, magnified (Burial 20)	172
Figure 80. Population comparison of periostitis presence	176
Figure 81. Subadult distribution of periostitis by age	177
Figure 82. Percentage of age group with periostitis	177
Figure 83. Comparison of periostitis by age group: subadults	
Figure 84. Age distribution of adults with periostitis	178
Figure 85. Adult distribution of periostitis by age and sex	179
Figure 86. Comparison of periostitis by age: males	180
Figure 87. Comparison of periostitis by age: females	180
Figure 88. Osteomyelitis in the right anterior distal femur (Burial 32, 50–60-year-old male)	181

Figure 89. Osteomyelitis in the right anterior distal femur, magnified (Burial 32, 50—60-year-old male)	181
Figure 90. Left femoral midshaft of Burial 101 (26–35-year-old male) showing "saber shin" bowing in comparison to a	
healthy femur from the Cobb collection (CC2)	182
Figure 91. Cranial lesion in the left parietal of a 55–65-year-old female (Burial 230)	184
Figure 92. Cobb Collection (CC101) left femur showing cloaca in a person who died while diagnosed with syphilis in 1937	
and an adult male 30–55 years of age (Burial 418) found to have similar resorptive lesions in the right posterior proxima	l
ulna and left posterior proximal femur	184
Figure 93. Porotic hyperostosis in right posterior parietal (Burial 138, 3—5 years old)	187
Figure 94. Porotic hyperostosis (Burial 64, 4.5–10.5 months old)	187
Figure 95. Thickened diploe of occipital adjacent to lambda, compared with a normal specimen at the same location	
(Burial 151, 35–45-year-old male)	188
Figure 96. Cribra orbitalia of the left eye orbit (Burial 6, 25—30-year-old male)	189
Figure 97. Cribra orbitalia of the right orbit (Burial 39, 5—7 years old)	189
Figure 98. Population comparison of porotic hyperostosis presence	190
Figure 99. Population comparison of cribra orbitalia presence	191
Figure 100. Subadult distribution of porotic hyperostosis by age	192
Figure 101. Percentage of age group with porotic hyperostosis	192
Figure 102. Comparison of porotic hyperostosis by age group	193
Figure 103. Adult distribution of porotic hyperostosis by age and sex	193
Figure 104. Comparison of porotic hyperostosis by age: females	194
Figure 105. Comparison of porotic hyperostosis by age: males	194
Figure 106. Co-occurrence of periostitis and porotic hyperostosis: comparison of populations	197
Chapter 11	
Figure 107. Severe osteoarthritis of the vertebral articular processes in a female aged 50—60 years (Burial 40)	201
Figure 108. Severe osteophytosis (<i>left arrows</i>) and osteoarthritis (<i>right arrow</i>) of a lumbar vertebra in a male aged	
35–45 years (Burial 63)	201
Figure 109. Age and incidence moderate to severe vertebral osteoarthritis	202
Figure 110. Age and incidence of moderate to severe osteophytosis	203
Figure 111. Severe osteophytosis of the cervical vertebrae in a male aged 35—45 years (Burial 63)	203
Figure 112. Schmorl's node depression of a lumbar vertebra in a male aged 35–45 years (Burial 70)	
Figure 113. Vertebral spondylolysis in a female aged 35—40 years (Burial 107)	207
Figure 114. Osteoarthritis with marginal lipping in the wrist of a female aged 50–60 years (Burial 40)	209
Figure 115. Mild to moderate osteoarthritis in the humeral articular surface of the elbow in a male aged 30—40 years	
(Burial 11)	210
Figure 116. Osteoarthritis of the ankle in a female aged 50–60 years (Burial 40): (a) superior aspect of the distal ankle	
articulations; (b) the proximal ankle articulation on the fibula	211
Figure 117. Osteoarthritis in the ankle and foot of a male aged 40—50 years (Burial 238)	211
Figure 118. Age and incidence of moderate to severe osteoarthritis in the upper limb	
Figure 119. Age and incidence of moderate to severe osteoarthritis in the lower limb	
Figure 120. Age and incidence of moderate to severe osteoarthritis of the elbow	
Figure 121. Severe hypertrophy of the ulnar supinator insertions in a male aged 40–50 years (Burial 369)	214
Figure 122. Stress lesion of the right humerus in a male aged 20—23 years (Burial 181)	214
Figure 123. Hypertrophy of the biceps brachii insertion of the radii in a male aged 40—45 years (Burial 10)	217

Figure 124. Hypertrophy of the linea asperae of the femora in a female aged 40–50 years (Burial 328)	217
Figure 125. Hypertrophy of the gluteus maximus insertions of the femora in a male aged 17–18 years (Burial 174)	218
Figure 126. Hypertrophy of the brachialis insertions of the ulnae in a female aged 25–35 years (Burial 223)	218
Figure 127. Ring fractures of the base of the skull in a female aged 35–40 years (Burial 107)	222
Figure 128. Seventeenth-century drawing of Africans in New Amsterdam showing normal axial loading	224
Figure 129. Perimortem fractures of the humerii in a female aged 18–20 years (Burial 205)	224
Figure 130. Perimortem fractures of the femora in a female aged 18–20 years (Burial 205)	224
Figure 131. Premortem occipital fracture in a subadult aged 13–15 years (Burial 253)	224
Figure 132. Burial 25 is shown in situ with musket ball	225
Figure 133. Spiral fracture in lower arm of Burial 25	225
Chapter 12	
Figure 134. Mean standardized long bone measures	236
Figure 135. New York African Burial Ground stature estimates: male	237
Figure 136. New York African Burial Ground stature estimates: female	237
Figure 137. New York African Burial Ground stature estimates: indeterminate sex	
Figure 138. Comparison of individual δI_{mean} values and stature estimates by sex	239
Figure 139. Comparison of average male statures: New York African Burial Ground and Steckel	250
Figure 140. Comparison of average female statures: New York African Burial Ground and Steckel.	
Figure 141. Comparison of statures: New York African Burial Ground indeterminate, Steckel male and Steckel female	252
Chapter 13	
Figure 142. African adult sex ratio: eighteenth-century New York City	259
Figure 143. African child-woman ratio, New York City	265
Figure 144. Summary of relevant factors of the political economic regime of Colonial New York	266

List of Tables

Chapter 4	
Table 1. Codes for Dental Morphology and Dental Measurement	62
Chapter 5	
Table 2. Population Sources for Craniometric Analysis by Froment	76
Table 3. Centroid Values for Howells's, AMNH's, and Keita's Cranial Series, Functions 1 and 2	79
Table 4. New York African Burial Ground Dental Traits Distribution	82
Table 5. Scott and Turner Population Descriptions	84
Table 6. Countries, Geographical Regions, and Historical Export Sites for Enslaved Africans	88
Table 7. Molecular Genetic Affinities of Individuals in the NYABG	90
Table 8. Anticipated Future Genetic Analyses of the NYABG Samples	93
Chapter 6	
Table 9. Comparison of Dental Hard Tissues and Bone	99
Table 10. Range of Element Concentrations in Human Dental Enamel	103
Table 11. African Dental Modification Patterns	107
Table 12. NYABG Modification Patterns with African and African Diaspora Reference Populations	108
Table 13. NYABG Chemical Analysis Sample	109
Table 14. ICP-MS External Calibration Results for NYABG Burial 6 Lower Left First Molar	111
Chapter 7	
Table 15. New York African Burial Ground Adult Mortality	123
Table 16. New York African Burial Ground Subadult Mortality	124
Table 17. Population of New York County, 1698–1800	125
Table 18. African Population by Age and Sex, Eighteenth-Century Censuses	127
Table 19. Sex Ratio New York City County 1703–1819	128
Table 20. NYABG and Trinity Church Subadult Mortality	130
Table 21. Skeletal Series of the African Diaspora	132
Table 22. Adult Mean Age at Death for African American Skeletal Populations	134
Table 23. NYABG, FABC, and Cedar Grove Subadult Mortality by Age Group	135
Table 24. New York African Burial Ground Life Table	136
Table 25. New York African Burial Ground Male Life Table	137
Table 26 New York African Rurial Ground Female Life Table	120

Chapter 8	
Table 27. Summary of Study Samples	145
Table 28. NYABG Canine Chronology Formula and Example Calculation: $CH/6 = YGI 6.5 - (MID/YGI) = Age of Occurrence$.	147
Table 29. Frequency of Hypoplasias in Males and Females at NYABG (n = 59)	147
Table 30. Comparison of Frequencies Reported in Skeletal Populations	148
Table 31. NYABG Frequency of Hypoplasia by Age Group and Sex (n = 99)	149
Table 32. NYABG Frequency of Hypoplasias in Canines and Incisors (Controlling for Attrition), by Age and Sex $(n = 48)$	152
Table 33. NYABG Frequencies of Hypoplasias in Third Molars by Age Group, Controlling for Attrition ($n = 97$)	152
Table 34. NYABG Frequency of Hypoplasia by Age Intervals in Mandibular Canines, by Age Intervals ($n = 37$ Hypoplasias)	152
Table 35. NYABG Comparison of Hypoplasia in Incisors and Canines	153
Table 36. NYABG Hypoplasia in Culturally Modified and Unmodified Permanent Teeth	155
Table 37. NYABG Comparison of Hypocalcification and Hypoplasia Frequencies by Age Group $(n = 99)$	155
Chapter 9	
Table 38. Dental Pathology Frequencies in NYABG Males, Permanent Dentition	159
Table 39. Dental Pathology Frequencies in NYABG Females, Permanent Dentition	160
Table 40. New York African Burial Ground Total Number of Carious Teeth, by Sex	161
Table 41. Dental Pathology Frequency by Sex for the Permanent Dentition of Individuals from the New York African	
Burial Ground	
Table 42. Dental Pathology Frequency, Deciduous Dentition	
Table 43. New York African Burial Ground Dental Pathology Mean Comparison with other Eighteenth- and Nineteenth-Ce Samples (Rathbun and Steckel 2002)	
Table 44. New York African Burial Ground Dental Pathology Mean Comparison with Other Eighteenth- and Nineteenth-Ce	
Samples (modified from Kelley and Angel 1987:204)	•
Chapter 10	
Table 45. Age and Sex of Assessed Sample from NYABG	173
Table 46. African Diaspora Skeletal Series Discussed in this Chapter	
Table 47. Occurrence and Status of Generalized Infectious Disease	
Table 48. Generalized Infectious Disease Statistical Testing, Intra-Population	
Table 49. Generalized Infectious Disease Statistical Testing, Inter-Population	
Table 50. Occurrence of Treponemal Infection Indicators	
Table 51. Demographic Profile of Occurrence of Treponemal Infection Indicators in the NYABG Population	
Table 52. Porotic Hyperostosis, All Cranial Locations.	
Table 53. Porotic Hyperostosis Statistical Testing, Intra-Population	
Table 54. Frequencies of Cribra Orbitalia in the NYABG Population	
Table 55. Cribra Orbitalia Statistical Testing, Intra-Population	
Table 56. Porotic Hyperostosis Statistical Testing, Inter-Population	
Table 57. Cribra Orbitalia Statistical Testing, Inter-Population	
Table 58. Medial-Lateral Bowing of the Lower Long Bones	
Table 59. Medial/Lateral Bowing Statistical Testing, Intra-Population	
Table 60. Co-occurrence of Porotic Hyperost osis with Periostitis	
Table 61. Co-occurrence of Porotic Hyperostosis with Periostitis Statistical Testing, Intra-Population	
Table 62. Co-occurrence of Porotic Hyperostosis with Periostitis Statistical Testing, Inter-Population	
···	

Chapter 11	
Table 63. Demography of the Sample Used in Stress Marker Analysis	200
Table 64. Distribution of Moderate to Severe Vertebral Osteoarthritis by Sex	201
Table 65. Distribution of Moderate to Severe Vertebral Osteophytosis by Sex	202
Table 66. Number of Fractures by Skeletal Element in Adults by Sex	
Table 67. Regional Distribution of Schmorl's Nodes	
Table 68. Percentage of Individuals with Schmorl's Nodes by Age	207
Table 69. Spondylolysis and Associated Vertebral Degenerative Changes	208
Table 70. Distribution of Moderate to Severe Osteoarthritis in the Upper Limb	209
Table 71. Distribution of Moderate to Severe Osteoarthritis in the Lower Limb	
Table 72. Average Moderate to Severe Musculoskeletal Stress Marker Scores by Age and Sex	215
Table 73. Frequencies of Musculoskeletal Stress Markers in Males and Females	216
Table 74. Skeletal Studies of Musculoskeletal Stress Markers in Enslaved African Americans	220
Table 75. Number of Fractures by Skeletal Region in Adults by Sex	223
Table 76. Number of Premortem and Perimortem Fractures per Individual	223
Chapter 12	
Table 77. African-American Stature Regression Formulas as Developed by Trotter (1970; cf. Ubelaker 1989)	231
Table 78. Fetal and Neonate Stature Regression Formulas as Developed by Fazekas and Kośa (1978)	231
Table 79. Regression Formulas for Calculating Stature of the Immature Remains of Male Children	232
Table 80. Regression Formulas for Calculating Stature of the Immature Remains of Female Children	233
Table 81. Regression Formulas for Calculating Stature of the Immature Remains of Indeterminate Children	234
Table 82. Power Values for Statistical Chi-Square Tests Based on Subsample Sizes and Magnitude of Effect	235
Table 83. δl, and δl _{mean} Values for the NYABG Population Subsample, by Sex	236
Table 84. Male Stature Estimates and Growth Standard Percentile Rankings for Individuals Less Than 25 Years of Age Only	239
Table 85. Female Stature Estimates and Growth Standard Percentile Rankings for Individuals Less Than 25 Years of Age Only	239
Table 86. Occurrence of Porotic Hyperostosis and Infantile Cortical Hyperostosis in the NYABG Population Subsample	241
Table 87. Chi-Square Test Results for Relationship between Porotic Hyperostosis (PH) and δl _{mean} and Percentile Rankings for Stature	242
Table 88. Generalized Infectious Lesions as Diagnosed in Long-Bone Skeletal Elements	
Table 89. Chi-Square Test Results for Relationship between Infectious Lesions and δI_{mean} and Percentile Rankings for Stature.	
Table 90. Distribution of Abnormal Long-Bone Shape in the Total NYABG Population Subsample, by Age and Sex	
Table 91. Distribution of Individuals with Biomechanical Stress Indicators by Age and Sex in the NYABG Population Subsample.	
Table 92. Results of Chi-Square Tests of Relationships between Biomechanical Stressors	
Table 93. Individuals with Craniosynostosis by Suture(s)	
Table 94. Chi-Square Test Results for Relationship between Craniosynostosis and Biomechanical, Nutritional, and	270
Infectious Indicators	249
Table 95. A Comparison of NYABG δI_i and δI_{mean} Values with Those of Five Native American Populations (Sciulli 1994)	
Table 96. Results of Chi-Square Tests of Relationships between Biomechanical Stressors and Abnormal Flattening	
of Long Bones	253
Chapter 13	
Table 97. African Population by Age and Sex, Eighteenth-Century Censuses	258
Table 98. African Adult Sex Ratio, New York County, 1703–1771	
Table 99. Population of New York County, 1698–1800 by Race	

Foreword

In 1991, during the excavation phase for the construction of the Federal Building now seen at 290 Broadway, New York City, a cemetery was uncovered containing human remains of Africans-most were enslaved, some free-who lived, worked, and died under inhumane conditions in colonial New York. This discovery, the largest bioarchaeological site of its kind, sparked heightened public awareness of an African heritage in the northern states of colonial America. An outcome of this awareness was the public's desire for amending and correcting the history of colonial New York during that period to reflect more accurately the lives and culture of these forgotten Africans and people of African descent and their contributions and roles in economic development. Several initiatives, sponsored by the General Services Administration on behalf of the American people, were launched to accomplish this goal.

The initiative to conduct historical and scientific studies of the remains and artifacts excavated at the site was entrusted to Howard University. There, Dr. Michael L. Blakey, now at the College of William and Mary, designed and implemented a comprehensive, interdisciplinary research program—the New York African Burial Ground Project—to address questions in three main areas: history, archaeology, and skeletal biology. As scientific director of the project, he assembled an international team of scholars, professionals, graduate and undergraduate students, technical staff members, and cultural specialists for various parts of the study.

The New York African Burial Ground: Unearthing the African Presence in Colonial New York serves as the culminating work of this project, reporting the research findings. This multivolume series covers broadly a contextualized historical perspective, details of the archaeological discoveries, and descriptions of the skeletal biology of the unearthed human remains. Each volume documents and validates the lives of African Americans' ancestors who lived and worked in colonial New York. Included in this work are detailed descriptions of the burials excavated, complete with drawings, figures, and tables, as well as a comprehensive appendix of the artifacts found within the burials.

Through the years of this project, membership of the research team changed, but the goal of the project remained constant, that of ensuring that the story of the origins, life, and death of the enslaved Africans of colonial New York would not be absent from the annals of world history.

O. Jackson Cole, Ph.D.

Howard University Executive-in-Charge of the African Burial Ground Project

James A. Donaldson, Ph.D.
Dean, Howard University College of Arts
and Sciences

Editorial Method

For the sake of consistency and because this was primarily an archaeological project, all three technical volumes of this series, *The New York African Burial Ground: Unearthing the African Presence in Colonial*

New York, were edited according to the conventions of the same style manuals: the style guide of the Society for American Archaeology and *The Chicago Manual of Style*, 15th edition.

Acknowledgments

It would be impossible to thank all of those in every walk of life who have helped the African Burial Ground Project over the past 12 years. All of those who stood for its preservation and dignity do, however, bear some responsibility for creating the information within this report, and we researchers are deeply indebted to them. We want to thank our supporters: especially the schoolchildren and their teachers. We also thank the churches, the civic and cultural organizations, the grass-roots political organizations, and the hundreds of visitors from around the world who visited our laboratories and offices. Other organizations that deserve recognition are: the Federal Steering Committee, the Schomburg Center; Friends of the African Burial Ground; the Committee of Descendants; Transafrica Forum; Malik Shabazz Human Rights Institute (NYC); Lift Every Voice, Inc. (Los Angeles); and many other organizations and institutions whose members have made this work possible by their moral and political support. Lastly, we would like to acknowledge New York City, State legislators, and their national counterparts, as well as our academic and professional colleagues. We cannot fail to point specifically to the enormous aid of those who stood closest to us for the longest time, including Mayor David Dinkins, State Senator (now Governor) David Paterson, Congressmen Charles Rangel, Jerome Nadler, and Gus Savage, and Senator Alfonse D'Amato. As opportunities are presented, we will continue to recognize every individual effort that has made this project possible.

Many individuals exhibited extraordinary and continuous participation in efforts to protect, elevate, and appreciate the African Burial Ground, without whom there would be neither a National Monument nor our research. Miriam Francis, Adunni Oshupa Tabasi, Dr. Muhammad Hatim, Reverend Herbert Doherty, Elo-

ise Dicks, Mother Franklin, Queen Mother Blakely, Gena Stahlnecker (representing then, Senator David Paterson), Ayo Harrington, Christopher Moore, Renice Goode, Roger Taylor, Mary Lacy Madison, Folana Heidelberg, John Arbogast, Noel Pointer (deceased), Jackie Parker (Sen. Levin's Chief of Staff), Elombe Brath, Howard Wright and many others are deeply appreciated for building this monument. Howard Dodson and Peggy King Jorde, Chairman and Executive Director, respectively, of the Federal Advisory ("Steering") Committee provided the steadfast and wise leadership that focused community concern toward its most productive ends. Later as Project Executive for Memorialization, Ms. Jorde did the groundwork for the ultimate memorial and interpretation of the site for which we are truly grateful.

The Office of Public Education and Interpretation, the branch of the project that provided the vehicle for continuous and growing public involvement in the project by virtue of the outreach of its dedicated and bright public educators who are deeply appreciated, and through the programs designed by its anthropologist Director, Sherrill Wilson, Ph.D. John Milner Associates, who assisted us for several years in the massive early work of the project, especially in New York, we want to thank its principals Dan Roberts and Alan Steinhusen. Looking back, we recognize also the unique contributions of Dale Lanzone and Bob Leuffin of GSA during our most productive negotiations. Thanks especially to Professor Warren Barbour who walked Blakey through the inner workings of contract archaeology as a knowledgeable and trusted confidant during the early negotiations with JMA and GSA.

We want to thank our colleagues at Howard who organized the Ties That Bind ceremonies in 1994 by which the ancestral remains on which we report here were first received into our laboratories, including the

organizers, Eleanor Traylor and Roberta McCleod. We thank Dr. O. Jackson Cole and Dean James Donaldson, who carried out the tireless political and bureaucratic work required to keep Howard University at the center of this project while over time its personnel and funding changed. Others in Washington include Vincent DeForest of the National Park Service (NPS), who was ever present with resources to give, and in New York the founding NPS Supervisor of the National Monument, Tara Morrison, inspires confidence in the work going forward. At the College of William and Mary's Institute for Historical Biology graduate and undergraduate staff involved at the end of this writing project included Grace Turner, Christopher Crain, Renee Ferguson, Jenna Dutcher, and many others who contributed to and benefited from the opportunity to conduct research in the service of the struggle for human rights.

We want especially to take the opportunity to thank those who assisted in the preparation of this report. Even though most are named on the preceding pages, we want to especially thank the staffs of the Howard University Cobb Laboratory, the College of William and Mary Institute for Historical Biology, and the Department of Anthropology at the University of Oklahoma. These individuals conducted research and prepared reports under extraordinarily difficult circumstances, and they did this in the spirit of humane commitment and with high standards. These students, technicians, and senior researchers and directors often sacrificed by working without funding. Although at times there was uncertainty about the security of the project's future, they were nevertheless faithful to the mission for which these volumes mark the culminating success. It is only by virtue of that commitment that we were able to succeed. Among these there were those who devoted many years of their lives working to see that the laboratories and offices functioned for researchers and the public—that the work was done and the data properly organized. These prominently include the office manager of the Cobb Laboratory, Reba Brewington, and its laboratory director, Mark Mack, who devoted at least a decade of their lives to long days of excellence on behalf of the history of the colonial Africans we report on here. All of the writing of this final report and previous drafts relied on their contributions.

The final draft report was prepared starting in January 2003, and the final report unedited version

was completed and submitted for transmission to the members of the peer review board near the end of June 2004. In the course of this work, as preparation of the final report versions, involving the merger of submissions from the various authors, was undertaken, all of the database, imaging, and text problems that had not occurred during the writing of the individual chapters and completion of the initial draft versions began to emerge. The smart and dedicated work of Christopher Null of the University of Massachusetts-Amherst and Shannon Mahoney at William and Mary corrected and refined the database and kept the information flowing to the authors. Autumn Barrett, also of the Institute at William and Mary, performed tirelessly and with an extraordinary range of skills as our editorial assistant. All of this was done in addition to their own graduate work and research contributions to the project. Thanks also to Cecelia Moore, administrative assistant, for unflinchingly hard work and dedication to the writing project. Paul Gattis at the University of Oklahoma also contributed to final database development in essential and important ways. Ryan Seltzer of Illinois State University provided key statistical advice. The project has been enormously fortunate to have received the focused attention of these special individuals.

Standing behind us were mentors and senior colleagues without whom there may have been more open fronts of professional warfare than we could have handled. George Armelagos at Emory University and Don Ortner of the Smithsonian Institution have given generously and courageously of their support to this project. As colleagues who shared our goals, Howard Dodson and Leith Mullings worked tirelessly from the very beginning to ensure that our efforts on behalf of this project received a fair airing in New York. We thank the three peer reviewers for useful criticisms of drafts of this manuscript. Finally, we thank our families and friends for giving every means of support imaginable.

Michael L. Blakey, Institute for Historical Biology, Department of Anthropology, College of William and Mary, Williamsburg

Lesley M. Rankin-Hill, Department of Anthropology, University of Oklahoma, Norman

Section I:

Background of the New York African Burial Ground Project

CHAPTER 1

Introduction

Michael L. Blakey

The New York African Burial Ground was "rediscovered" in 1989 in the process of preparation for the construction of a proposed 34-story federal office building by the U.S. General Services Administration (GSA) at 290 Broadway in New York City (Ingle et al. 1990). The site for the proposed building was once part of the African Burial Ground that extended "from Chambers Street on the south to Duane Street on the north and from Centre Street on the east to Broadway on the west" (Yamin 2000:vii). A fullscale archaeological excavation was conducted by Historic Conservation and Interpretation (HCI) and John Milner Associates, Inc. (JMA), preceding the building project, as required under Section 106 of the National Historic Preservation Act of 1966 (NHPA) (as amended) in order to mitigate the destruction of potential cultural resources (Figure 1). The excavation and construction site on the African Burial Ground is located at Foley Square, in the city block bounded by Broadway, Duane, Reade, and Elk Streets in Lower Manhattan, one block north of City Hall.

Archaeological excavation and building construction began during the summer of 1991 and ended in the summer of 1992, when the U.S. Congress called for work on the site to cease in response to the public demand to properly memorialize and, ultimately, to learn about the people buried there. Beginning in April of 1992, Michael Blakey of Howard University's Department of Sociology and Anthropology assembled a research team for postexcavation analysis, laboratory, and interdisciplinary studies. The research team members, who studied the skeletal remains of the 419 individuals representative of eighteenth-century interred African captives and their descendants, were from Howard's W. Montague Cobb Biological Anthropology Laboratory and eight other affiliated universities. This report presents the data and analyses of human skeletal remains from the New York African Burial Ground, produced after more than 9 years of research.

Historic Background and Significance of the Cemetery

The original cemetery had been established by 1712; it was reportedly the location of the executions of participants in an African rebellion during that same year. Its use officially ended in 1794. There is no written record of the cemetery prior to 1712; however, a 1697 ban barring the burial of blacks, Jews and Catholics by Trinity Church suggests that the cemetery might have been created earlier than 1712 in response to a growing need for burial space. In 1712, Chaplain John Sharpe wrote of the burial of Africans "in the Common by those of their own country and complexion without the office, on the contrary the Heathenish rites are performed at the grave by their countrymen" (Sharpe 1881:335). The part of the Common on which the African (or "Negroes") Burial Ground was established (Figure 2) began outside the palisade of the colonial town near the summit of a hill whose slope inclined toward the fresh water pond known as the Collect (Kalkhook) (Foote 1993; Volume 3 of this series, Historical Perspectives of the African Burial Ground: New York Blacks and the Diaspora [Medford 2009]). The cemetery extended across 5.5–6 acres of land. Less than one city block of this site was excavated by archaeologists in 1991–1992. The filling of the Collect and the grading and flattening of that part of Manhattan Island at the turn of the nineteenth century preserved the excavated portion of the cemetery under 16-28 feet of fill.

The African Burial Ground appears to have been one of the first social institutions built by Africans in colonial New York City (Medford 2009). Burial

Figure 1. Early archaeological excavation of the African Burial Ground.

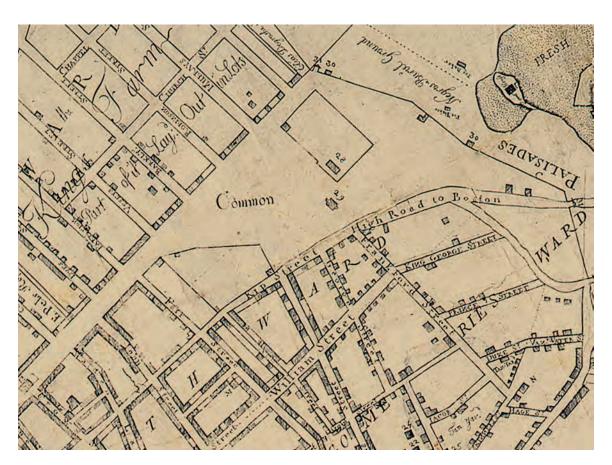


Figure 2. Map of the eighteenth-century African Burial Ground, Maerschalck Plan (1755) in African Burial Ground and The Commons Historic District Designation Report, New York Landmarks Preservation Commission, February 1993.

of the dead and other funerary rituals are definitive human characteristics. Such mortuary activities are as old as our species and are both ubiquitous and unique to humanity. The cemetery may well have taken on special significance for affirming that its participants were human beings, for preserving cultures, and for maintaining a sense of hopefulness among New York's African community. In the main, Africans in colonial

New York were enslaved, not free laborers, and thus experienced a particularly intensive contestation of their humanity by Europeans who were intent upon objectifying Africans as property. It is now obvious that in New York, as throughout the slaveholding Americas, enslaved Africans were arbitrarily stripped of names and renamed, family members were separated to be sold apart, social institutions and religious practices were disallowed or went underground, the use of African languages was suppressed, and the cultural history of those Africans was denigrated by slaveholders. In the urban context of colonial New York City, there were strikingly few opportunities for social interaction among African men, women, and children held in the isolated houses and businesses where they worked and slept (Medford 2009).

Thus, efforts were made to deny these Africans the basic qualities that were associated with a distinctly human existence, which even the poorest European colonist could claim. The attribution of the role of "slave" or property to a human being (their conversion to chattel) required a method for denying the existence of the African's humanity if both Africans and Europeans were to be convinced of the legitimacy of the master-slave relationship. Questioning the moral or other ideological legitimacy of hierarchy makes such inequitable structures vulnerable to internal questioning, conflict, and destruction (see for example Habermas's Legitimation Crisis [1975] or Frederick Douglass's analysis [Douglass 1950 (1854)] of the use of racist science in the mid-nineteenth-century attempts to justify slavery). New York's African Burial Ground, then, can be viewed as an important location at which human qualities and rights were struggled for simply by virtue of careful, customary burial practices that no human society has been willing to do without. This act of asserting their humanity simultaneously represented resistance to the legitimation of slavery.

The African Burial Ground was also a location for the contestation of African humanity and for the establishment of white authority. The ban on African interments at Trinity Church (Figure 3) and other Christian church cemeteries reflected the creation of social distance (the construction of the "Other") based not only on religion, but also increasingly upon "race" (see Epperson [1999] for an interesting discussion of the emergence of the race concept relative to the African Burial Ground).

Whether Africans were or were not Christian was an important distinction for the justification of enslavement. Like other attempts to distinguish enslaved

Figure 3. Trinity Church in lower Manhattan today.

blacks from true human beings, religious justification became a tangled web of desperate attempts to resolve its fundamental contradiction with the fact that blacks were indeed both human and considered property. The narrative of John Jea, who was brought to New York City from Calibar (bordering West and West Central Africa) and enslaved in the eighteenth century, is instructive (Gates and Andrews 1998). Jea described his enforced conversion to Christianity as a punishment by his "mean master" for questioning the duplicity of Christians who enslaved people. Indeed, most New England slaveholders sought to prevent Christian conversion in order to deny human rights to the enslaved, while others saw slavery and conversion as Christian charity and duty (Koo 2007). Jea discovered, however, that as a Christian convert, he obtained a legal right to manumission in New York. The project director argues that Jea had obtained by conversion a crucial measure of humanity in the logic of Western Europeans. This rather large contradiction, or loophole, in the ideological justification of slavery in eighteenth-century New York was amended by the requirement that Africans like Jea demonstrate the ability to read and understand passages from the Bible, while it had been made illegal to teach Africans to read. Jea claimed to have satisfied this requirement by divine intervention and gained his freedom (Jea in Gates and Andrews 1998).

The spatial exclusion of blacks from burial with whites in Christian sacred space was a significant part of the attempt to establish ideas to bring about the social control of New York Africans. Yet, as in the above reference to Sharpe's criticism of traditional African religious rites, the African Burial Ground on the municipal Commons also presented the threat of autonomous African thought and activity.

Even in the unsanctified space of the Common, tight control of African activities was attempted. Night funerals were banned by law in 1722, and the gathering of more than "12 slaves admitted by the owner of the dead slave" was outlawed by a 1731 amendment to the law (Medford, Brown, Carrington, et al. 2009a:89; New York City Common Council 1905:4: 86-88). The assembly of larger numbers of Africans who expressed cultural independence—that is, conducted African funeral rituals—alarmed enslavers who were concerned that they were "plotting and confederating" for revolts and other "mischief" during funerals (Medford, Brown, Carrington, et al. 2009a:89; New York City Common Council 1905:4: 86-88). African revolts occurred regularly in the Atlantic world. It is perhaps not insignificant that of the few written references regarding the African Burial Ground by eighteenth-century whites, most refer to its possible use for organizing revolts, as a place where African rebels were executed, or as the location of objectionable independent cultural activity, for example, traditional African or syncretic activity such as Pinkster Day.

The research team has considered individual cases in the African Burial Ground for what they might reveal about these events. At best, such cases are only suggestive and cannot be established as having direct bearing on the revolts. For example, Burial 137, a 25-35-year-old adult (Figure 4), and Burial 354, a 35-45-year-old male, contained bones whose darkened, highly polished appearance was consistent with slight burning or singeing of bone. Historical evidence points to individuals being burned at the stake on the burial ground who were convicted of participating in the African revolt of 1712. The causes of the burns to Burials 137 and 354 are unknown. Other possible relationships between specific burials and corporal punishment or acts of terror were taken up in a previous report by Augustin Holl (2000) and are considered in Volume 2 of this series, *The Archaeology of the New* York African Burial Ground (Perry et al. 2009a).

The African Burial Ground was desecrated in diverse ways that relate to the contestation of Afri-

Figure 4. Rib ends from Burial 137 showing likely heat-induced darkening.

can humanity. Archaeologists have found industrial waste from an adjacent ceramics factory on the site; this demonstrates its use as a dump by Europeans in the mid- to late-eighteenth century. In April 1788, the violent Doctors' Riot broke out when the petitions and published warnings of free blacks against grave robbers went unheeded by New York's medical establishment:

That it hath lately been the constant Practice of a number of Young Gentlemen in this City who call themselves students of Physick to repair to the Burying Ground *adjudged* for the use of your Petitioners and under cover of the night and in the most wanton sallies of excess to dig up the bodies of the deceased friends and relatives of your Petitioners, carry them away, and without respect to age or sex, mangle their flesh out of a wanton curiosity and then expose it to Beasts and Birds [New York Municipal Archives, Unfiled Papers of the Common Council, 4 February 1788].

The abductors were subsequently warned that "they may not alone suffer abduction of their wealth, but perhaps their lives may be forfeit of their temerity should they dare to persist in their robberies, especially in unlawful hours of the night" (*The Daily Advertiser*, February 15, 1788). Again, these warnings suggest that the cemetery may have been especially important as an institution for the affirmation of African and African American humanity under the material conditions of slavery and in the pervasive presence of the psychological affront to black humanity required to morally justify those conditions.

Here too, a case can be presented that is possibly, although not certainly, associated with events

Figure 5. Burial 323 transverse section of calvarium (top of skull).

Figure 6. Burial 323 magnified saw marks.

surrounding the early desecration of the cemetery. Burial 323 was a 19-30-year-old male who exhibited evidence of substantial biomechanical stress and healed skull lesions that may represent an earlier period of nutritional inadequacy. The initial morphological assessment by the Metropolitan Forensic Anthropology Team (MFAT), a group of consulting physical anthropologists from the City University of New York's Lehman College, indicated a "Caucasian" affiliation for this individual. He is among the 7 percent of individuals of the New York African Burial Ground sample who were assessed as non-African or ambiguous using racial typology. Strontium data point to an American place of birth for this individual, which would be unusual for adult enslaved Africans in New York (see Chapter 6 for the methodology pertaining to these findings). This individual was buried holding the top half of his skull in his arms (see Burial Descriptions in Volume 2, Part 2, of this series, The

Archaeology of the New York African Burial Ground). The skull had been deliberately sectioned transversely using a saw, as is done in autopsy or dissection in a gross anatomy laboratory (Figures 5 and 6). The burial is suggestive of the frequent grave robberies that had led to the Doctors' Riot of 1788. If this burial had previously been looted (which can only be speculated), this careful, unusual reburial is intriguing.

The African Burial Ground was closed in 1794 in the wake of the Doctors' Riot, the cemetery's overcrowding, and the petition of African Americans for a second "African Burial Ground." The land comprising the cemetery was restored to the Van Borsum heirs, who had long claimed to own this part of the Common, and they divided it into house lots. The archaeological excavation showed that their privies and foundations were often dug into the burials.

Finally, the site was buried under several feet of fill at the turn of the nineteenth century and nearly forgotten. It is not known what African Americans thought of the elimination of their old cemetery. It is nonetheless evident that their century-long humane struggle to maintain their cemetery as sacred space was often challenged by desecration by whites and that the first African Burial Ground was eventually overwhelmed by those challenges. The African Burial Ground reemerged two centuries later surrounded by disturbingly similar issues to the human rights concerns of the eighteenth century.

Blacks, who constituted 20 percent of New York City's population at the time of the American Revolution, became a proportionately smaller community afterward. Although the massive waves of European immigration throughout the nineteenth and early-twentieth centuries account for much of the relative diminishment of blacks in the city, it should be mentioned that a major out-migration had occurred with the departure of the British and Tories immediately after the Revolution. Africans had fought for their own liberation on both sides of the War of Independence. Many of those who joined the British were manumitted and relocated to slaveholding Nova Scotia. Many of them remained dissatisfied and successfully negotiated their resettlement to Sierra Leone, West Africa.

In 1799, a law was passed that assured gradual emancipation in New York State, an emancipation that was effective, with few exceptions, in 1827. A dynamic free community then developed with important educational, religious, economic, cultural, and political institutions that continued to struggle with subtler forms of racial discrimination than experienced during slavery. Religious justifications for social inequities were replaced by anthropological notions of the racial inferiority of blacks who, by mid-century, were predominantly Christian. A great migration occurred during the first half of the twentieth century as African Americans left the desperate conditions of the tenant farms in the post-plantation economy and Jim Crow segregation of the South in search of jobs in northern cities. New York's black community saw renewed growth—even a "Renaissance" of the "New Negro" in Harlem—despite continuing problems of racism and poverty that also motivated antilynching campaigns and a Back-to-Africa movement there. Civil Rights, Pan African, Left, Black Consciousness, Black Nationalist, Integrationist, and other political tendencies would characterize the diverse views of African Americans regarding their identity and betterment in New York throughout the second half of the twentieth century.

Recent Public Significance of the African Burial Ground

Much had changed by the time New York's African Burial Ground reemerged as a public concern. Indeed, in 1991, New York City had its first African American Mayor, the Honorable David Dinkins, and African Americans were represented on the city council and key legislative posts. Yet, the contestations about the humanity of blacks had continued. It seems that in the 1990s, the struggle for human equality had to do with the effects of racism in lending institutions, the workplace, police departments, the courts, and education (including antiracist efforts to incorporate African and African American history in public school curricula). Although the protection of cemeteries as exemplars of human dignity never seemed to emerge, the reaffirmation of the fundamental significance of the cemetery was stunning upon the rediscovery of the African Burial Ground.

The GSA took an expeditious approach to its building project at the burial ground in 1991 and 1992; this approach was broadly perceived as desecration. Archaeological mitigation of the project's destructive effects was also rushed, as archaeologists worked 11 hours per day, 7 days per week to remove remains without benefit of the guidance of a research plan. At regular meetings between the African American public and the GSA, William Diamond, GSA Regional Administrator, claimed to take up the public's demands with his superiors. Later, Diamond admitted in a congressional hearing that he had never done so. The public requested an end to excavation and a fitting memorial. The GSA continued archaeological removal and building construction. Mr. Diamond described his feelings about those requests as resistance to being "blackballed or blackmailed" in a climate similar to the "Rodney King" incident (see the documentary film, African Burial Ground: An American Discovery, produced by David Kutz and written by Christopher Moore [Kutz Television, Inc. 1994]).

The situation was indeed tense, as the African American public became increasingly impatient with the GSA's dismissive attitudes that many felt would not have been directed toward the concerns of non-blacks in regard to the dignity of a historic cemetery (see testimony of Mayor David Dinkins [United States Congress. House. Committee on Public Works and Transportation. Subcommittee on Public Buildings and Grounds 1992:189–194]; Laurie Beckelman, Chair of

the New York Landmarks Preservation Commission [LPC] [United States Congress. House. Committee on Public Works and Transportation. Subcommittee on Public Buildings and Grounds 1992:212]; and others during congressional hearings on July 27 in New York City and September 24 in Washington, D.C.).

A Federal Advisory ("Steering") Committee would ultimately be established in the wake of massive protests, prayer vigils, and powerful black legislative intervention (Harrington 1993; LaRoche and Blakey 1997). The background to this situation, described in the committee's recommendations to GSA and to Congress, is summarized next:

In June 1991, human remains were discovered during archaeological testing of the site. By October 1991, excavation for the Foley Square Federal Office Tower Building had begun. ACHP [Advisory Council on Historic Preservation] and LPC [New York's Landmarks Preservation Commission] recommended that excavation only continue with an approved research design and with the input of the African [American] community. Unlike the burial grounds of Native Americans that are protected by law from this type of desecration [NAGPRA legislation of 1990], however, there is no specific law preventing the desecration of the burial grounds of Africans. Without a specific law preventing the desecration of the burials of Africans, GSA felt no obligation to halt the exhumations, consult with the community, or even respond to the very community whose ancestors' remains were being disinterred. Over the course of the next year, community groups, individual members of the community, and other government offices registered ongoing concern and dissatisfaction with the continued excavation. In May 1992, Mayor David Dinkins of New York City called together a group of citizens and formed the Mayor's Task Force on the African Burial Ground. Members of the Task Force formed the basis of the Steering Committee. By July 1992, at least 390 burials had been removed.

In response to a letter from Mayor Dinkins, [indicating their violations of the NHPA by not responding to the community or having an acceptable research design] GSA stated that they would excavate an additional 200 burials on a portion of the site that was to become a four-story pavilion beside the office building.

GSA's position was essentially that the voice of the citizens, or even the voice of the local government, was not its concern, and that it would only respond to specific instructions from Congress. On July 27, 1992 after a one-day hearing held by Congressman Augustus Savage [African American, Democrat from Illinois], Chairman of the House of Representatives' Subcommittee on Buildings and Grounds, GSA received those instructions. Congressman Savage heard testimony from Mayor Dinkins, LPC, GSA, and Dr. Sherrill Wilson (an African American anthropologist and historian), and Dr. Michael Blakey (an African American physical anthropologist). The Congressman expressed his dissatisfaction that, despite the recommendations to the contrary by both ACHP and LPC, construction had continued on the site without a research design that addressed the presence of human remains associated with the African Burial Ground, Congressman Savage found that the GSA had failed to live up to its Section 106 responsibilities and instructed the construction on the pavilion site halt immediately. Congressman Savage further informed GSA that no additional GSA projects would be funded until a meeting took place between the GSA Administrator and Congressman Savage.

In late July, meetings took place between GSA and Congressman Savage, Congressman Robert Roe (Chairman of the House Public Works Committee), and Congressman John Paul Hammerschmidt. Additional meetings took place between city agencies involved, and the decision was made that a Federal advisory committee of primarily descendant African community leaders and professionals be established to make recommendations to GSA with regard to its Section 106 responsibilities at the site . . .

The Steering Committee . . . was chartered in October 1992 to represent the interests of the community and make recommendations to GSA and Congress regarding the present and future activities affecting the pavilion portion of the Federal construction site now known as the African Burial Ground. [Building of the tower portion of the site was permitted, including interpretive elements regarding the Burial Ground on its first floor]. Its mandate includes: (1) the review of proposals regarding the human remains on the Pavilion site, (2) the analysis,

curation, and reinterment of remains removed from the African Burial Ground and (3) the construction of a memorial or other improvements on the Pavilion site.

Shortly after the Steering Committee was chartered, President Bush signed Public Law 103-393 ordering GSA to abandon construction on the Pavilion site, and approving the appropriation of up to \$3 million to finance the modification of the Pavilion site and appropriate memorialization of the African Burial Ground. [Jorde 1993:6–7].

Ironically, the "disrespect for a segment of this community" of which GSA was accused by Congressman Savage at the July 27 field hearing in New York may in fact have helped galvanize public resolve to uphold the dignity of the cemetery. With the collaboration of community activists and the LPC, the site became a New York State and National Historic Landmark. Collaboration between private citizens and the National Park Service brought about the site's nomination to the United Nation's World Heritage Site list. It is the only African American heritage site on that nomination list. The United Nations Human Rights Commission sponsored briefings in Geneva on preliminary New York African Burial Ground Project research findings in 1995 and 1996 (Blakey 1998a) after New York and Los Angeles black human rights organizations (Malik Shabazz Human Rights Institute and Lift Every Voice, Inc.) brought the site to their attention. There had not been such public outcry about the desecration of an African American cemetery since the Doctors Riots' at the African Burial Ground and its adjacent pauper's field in 1788. The cemetery is of intense cultural and spiritual concern for many people of African descent in the United States and elsewhere. In 2007. New York's African Burial Ground became the first United States National Monument to its African Founders.

Significance of the Project's Analytical Approach

Many aspects of the project are novel, not the least of which is the large number of skeletons (419) from the site; this constitutes the largest colonial archaeological sample of any ethnic group available for study in the Americas and the earliest African cemetery

in the United States. The human skeletal remains of the New York African Burial Ground provide a uniquely substantive body of primary evidence on eighteenth-century colonial North America. It is a window that faces most directly toward the presence and conditions of Africans enslaved to build the English colonial foundations of the United States. This research also examines facts of life in other parts of the Americas to which these once living individuals and colonial New York's economy were closely connected.

These "intrinsic" qualities of the age and size of the New York African Burial Ground hold particular value for exploring the earliest phases of American history and for making statistical inferences from archaeological populations to a broader, contemporaneous community that requires the large sample of individuals found here. During the research team's first involvement at the site, in March of 1992 by invitation of the ACHP and Mayor Dinkins' liaison, it was clear that "intrinsic" archaeological value is subjective (Figure 7). Whatever the number or quality of the material evidence in the ground, the knowledge derived from it is conditioned by the theoretical framework used to interpret data. The significance of data will depend partly on those interpretations as well as upon the ethical procedures (or lack thereof) by which the data were obtained; this will affect how people will or will not choose to relate to and use the information from an archaeological site.

The research project sought to maximize the significance of the information available from the site. New York's African Burial Ground clearly was and is a site of unique potential. Recognizing this fact, the research team drew from experts' firsthand experiences and benefited from the problems or limitations with previous studies. The research design also drew from compelling ideas under discussion by specialists in physical anthropology, archaeology, African Diaspora studies, epistemology, and ethics. The team believed that there were fundamental problems with the way in which smaller African American bioarchaeological sites had been studied in the past, and this project provided an opportunity and obligation to reformulate the research approach to reflect what the team had learned about those mistakes. The team would apply the alternative approaches that it considered to be appropriate for this kind of site. The praxis of applying these new approaches would lead to better and more exciting kinds of information, including a clearer elucidation of technical and theoretical

Figure 7. Mayor David Dinkins (*center*), Peggy King Jorde (Mayor's Liaison), and Howard Dodson (Chief, Schomburg Center) (*front*) are briefed on the excavation by Michael Parrington (Principal Archaeologist for HCl and John Milner Associates).

problems, than was obvious initially. Chapters 2 and 3 examine these past problems, our reformulation of research procedures in light of those problems, and the new avenues over which we were led by logic and circumstance in the course of the New York African Burial Ground Project.

The research team's combination of academic and contract archaeology departs from previous contract work and represents a particular trajectory in the practice of anthropology that is necessarily critical of previously acceptable standards. The New York African Burial Ground Project's alternative approaches seek to represent new and better standards of anthropological practice. The project has embraced the commitment that this important site, and the humane community interests to which it relates, deserve the best alternative to dehumanizing (objectifying) interpretations of African American identity and history that the team is able to advance. The project competed to direct burial ground research at the end of excavation. The research team encountered forensic anthropologists (cum bioarchaeologists) and contract archaeologists, some of whose typical approaches were acceptable to perhaps most of our colleagues (see Epperson, 1999 and "Comments on the Draft Research design for Archaeological, Historical, and Bioanthropological Investigations of the African Burial Ground and Five Points Area"), yet were unacceptable to the team. The research team strives still to pursue alternate research practices and methodologies; thus, some explanation is warranted, as the team encountered many colleagues who were either strongly opposed or strongly in favor of its approach. The team asserts that its alternative approach enhances the scientific rigor, humanistic meaning, and societal significance of New York's African Burial Ground research.

By the 1990s, two tendencies of African Diaspora bioarchaeology had become well defined. First, a biocultural approach uses the demography and epidemiology of archaeological populations in order to verify, augment, or critique the socioeconomic conditions and processes experienced by human communities. In its latest form, political economic theory structures the interpretation of biocultural relationships. The second, a forensic approach, uses, in part, the descriptive variables used by police departments for individual identifications (race, sex, age, and stature), along with pathology assessments, in order to analyze human remains from archaeological sites. Yet the bioarchaeological context is not the appropriate place for the application of forensics, which tends to reveal archaeological samples in descriptive rather than

historically dynamic ways. Although the majority of the procedures for the technical assessment of age, sex, and pathology are the same for both approaches, they differ in the extent to which a descriptive approach or forensics work relies on the objectified categories of biological race identification, without relying upon (or constructing) social, cultural, and historical information that is at the core of biocultural analysis. The result of descriptive/forensic work is the construction of an acultural and ahistorical group of individuals; the result of biocultural work is a biological reflection of the historical processes that bring about the social condition of a community of people. We maintain that the forensic or descriptive approach is appropriate for police identifications, not for the interpretation of the ways of life in past human communities. Forensics is not bioarchaeology or paleopathology. An example of continued and increasing confusion on this point is the common use of the term "forensic anthropology" to refer to bioarchaeology, perhaps due to the prominence of forensics in the American media.

A public struggle took place in New York that illustrates the contrast between these two approaches. The initial excavation teams at the site (HCI and the Metropolitan Forensic Anthropology Team [MFAT]) included only one senior anthropologist who had had experience studying African American populations. This person had no relevant academic training, and their legally mandated research design was glaringly absent in historical knowledge of New York's African American past. Their research design was twice rejected by the federal and city agencies that were responsible for its evaluation. Forensic methods of race estimation were presented throughout debates at the site as representing an objective approach to the construction of the identity of the colonial population. These anthropologists' emphasis on racial traits, their obvious lack of knowledge of the study population's culture and history, coupled with the efforts of some GSA officials to fend off African American influence on the cemetery's disposition, were responded to with deepening indignation by the descendant-community members who witnessed the excavation.

Michael Blakey, at the time a faculty member of the Howard University Department of Sociology and Anthropology and the Department of Anatomy, assembled a team of physical anthropologists, archaeologists, and historians in the spring of 1992. This team prepared a design that began to establish the full scientific and historical significance of the site. The majority of these researchers were African Americans,

and the team was more ethnically diverse than those assembled for previous bioarchaeological projects. The scholars who were selected held advanced and terminal degrees from leading university programs, were established leaders in their fields, and had a track record of research on the African Diaspora. They were also willing to apply biocultural approaches and were inclined toward various forms of publicly engaged scholarship (Blakey et al. 1994) and activist scholarship or, minimally, respected the rights of descendant communities to influence the disposition of their ancestral remains at archaeological sites. These sensibilities to public accountability stemmed largely from influences of African American "vindicationist" scholarship (see Chapters 2–3 on the critical and corrective approaches to history, so labeled by the pioneering anthropologist St. Clair Drake) and by the heightened dialogue with indigenous peoples (some of us had participated in discussions of the World Archaeological Congress and Native American Rights Fund, when many anthropologists were resistant even to meeting with indigenous peoples on the issue) that had recently led to the Native American Graves Protection and Repatriation Act (NAGPRA) of 1990. The research team assumed that the African American public should have the right to determine the disposition of the site as, indeed, that community insisted on using the more general imprimatur of the NHPA of 1966 (as amended) to assert its right of influence over "cultural resources." The research team has continued to develop upon the idea that these ethical demands and those of scientific rigor are not mutually exclusive and that the quality of knowledge can be enhanced by humane principles. The team invoked both the ethical principles of the American Anthropological Association and the Vermillion Accords of the World Archaeological Congress in support of community empowerment as a professional standard (La Roche and Blakey 1997).

By late June of 1992, the Congressional Subcommittee on Transportation and Grounds (chaired by Hon. Gus Savage), in support of the Mayor of New York (Hon. David Dinkins), found that the GSA was not in compliance with the NHPA and stopped excavation. The subcommittee turned over the decisions about what should be done with the excavated remains to a federal advisory steering committee. The Steering Committee was chaired by Howard Dodson, Chief of the Schomburg Center for Research in Black Culture with Peggy King Jorde as its Executive Director, and consisted mainly of African American activists

Figure 8. Night Procession of the Ties That Bind Ceremony at Howard University marking the transfer of the African Burial Ground ancestral remains to an African Diasporic cultural and research institution in November of 1993 (photograph by Roy Lewis).

and cultural workers. The project was then assigned to Howard University after a congressional review showed that its Cobb Laboratory was best suited for the technical demands of the remaining analysis (Figure 8). At that time, the Howard research project included the archaeological contract firm that had recently taken over the excavation (i.e., JMA) for an extended period of transition. The Howard researchers regarded the descendant community as their ethical client and entered into intensive dialogue with this community about the possibility of anthropological research. Decisions regarding the kind of research to be done, if any were to be done at all, would depend on community acceptance of an evolving research design that would include methods to address lay people's questions (see Appendix A). The accepted research design (Howard University and JMA 1993) proposed the most comprehensive interdisciplinary study then attempted, with studies that ranged from molecular genetics to African art history. Included on the team were specialists in the archaeology and history of relevant African, Caribbean, and North American

diasporic populations, all leading scholars and their most energetic students. The full range of the latest techniques for skeletal recordation and assessment would be used; as a guide, we used a manuscript of *Standards for Data Collection from Human Skeletal Remains* (Buikstra and Ubelaker 1994), then in final preparation. The problems presented for research included: the cultural origins, the physical quality of life, the transformations, and the resistance to slavery that could be gleaned from the data.

The current report responds to many of these problems and opportunities in all of its chapters. After completion of the approved research, the skeletons were to be returned for reburial, and thereafter a monument and interpretive center were to be constructed. The vast majority of the proposed research goals have been achieved by the present research, although some hoped-for objectives, particularly in ascertaining more fully the origins of the New York African Burial Ground sample, were not realized.

This study seeks to advance the biocultural approach in physical anthropology that resonated

with living African Americans rather than to engage in descriptive racialization and cursory history. The approach is amenable to synthesis with diasporic studies that both the researchers and lay community leaders found intuitive. The ample involvement of humanists—historians, cultural anthropologists, and even artists involved in facial reconstruction and the interpretation of mortuary art-along with archaeologists and biologists, is also consistent with the eclecticism of African American Studies as conceived since the turn of the twentieth century. We focused on revealing the diasporic experiences of the enslaved New York Africans, the history and identity of their descendants, and helped facilitate their descendants' empowerment in telling their own story and memorializing their own ancestors.

The team's facilitation of such African American perspectives and concerns for the past led to accusations of "reverse discrimination," even though the project director had for the first time brought together a uniquely ethnically diverse team of physical anthropologists, archaeologists, and historians. Nonetheless, critics raised objections from the vantage point of their traditional theoretical and methodological perspectives in all-white laboratories and fieldwork. Indeed, attention given to the initial problem of black exclusion at the New York African Burial Ground Project was also followed by a small but noticeable increase in outreach to black students by archaeological projects. It may simply have been the case that the debate about the consideration of race at the New York African Burial Ground site was contemporary with the wider debate then taking place throughout United States society.

During the 1990s, the New York African Burial Ground Project began developing a synthesis of biocultural anthropology with the African American tradition of diasporic studies. The signatories to the memorandum of agreement (the U.S. General Services Administration [GSA], New York Landmark Preservation Commission [NYLPC], and the President's Advisory Council on Historic Preservation [ACHP]) initially expressed discomfort with the incorporation of African American traditions of critical and corrective history and anthropology (earlier termed "vindicationist") in a draft of the research design. The research plan was technically sound despite the lack of "multicultural" approaches that these agencies insisted would make a more appropriate alternative, although such an alternative did not exist. The review of the April 1992 research design by the ACHP, for example, expressed concern that the local anthropologists did

not have sufficient say in how the site would be treated and that too little attention was given to the spiritual significance of the site. They also stated that,

In reviewing the research designs . . . we note a particular tone in several statements describing the historic context for the proposed research. While we appreciate that the African Burial Ground site is of particular importance to African Americans, we believe that such statements represent an ethnocentric perspective rather than the multicultural one appropriate for a document presented for federally sponsored scientific analysis, education, and public outreach. [Robert D. Bush to Robert Martin, letter, 28 May 1993].

The GSA's instructions to the project's scientific director, who was responsible for the research design's content, were as follows:

As to the political or ethnocentric overtones in the research design described at page 3 of the ACHP comments, please understand that the United States Government may not be a party to, or engage in, any form of discrimination, either in acts or language. Accordingly, please review the entire research design, deleting any discriminatory references, inferences or attributions, etc., in the document [Lydia Ortiz to Michael Blakey, letter, 13 September 1993].

In fact, no changes would be made because no discriminatory content existed. The passages to which the ACHP referred were simply definitive of the concerns and critical perspective of African Diaspora scholarship. It seemed that to affirm the vindicationist or corrective value of the site made our work more meaningful to some and more threatening to others. This is not to lay blame, as indeed the ACHP would give key support to efforts to complete the research and memorialization of the site. It is to say that misunderstanding and philosophical differences related to America's racial divide emerged essentially around the fact that the research was being organized by blacks who were distinct in more ways than pigmentation. Many anthropologists expressed fears that the project supported the notion that only blacks could study black sites—a position never put forward by the project. Indeed, our research team consisted of racially diverse scholars. These "ethnocentric" concepts were sufficiently resonant with the descendant community's perceptions of the site's archaeological significance that whole paragraphs of the research design were incorporated in the memorialization proposal of the steering committee, as a public expression without reference to the research design. Presented below is a key paragraph from the allegedly ethnocentric portion of the research design, which is quoted in the first case and paraphrased in the second:

Due to the circumstances that have brought about their presence, these material remains of African ancestors present themselves during a time of social and emotional strife when inspirational uplift is most needed in the African American community; during a time when evidence of the significance of racism in America needs desperately to be brought to bear on the minds of Euroamericans; and during a time when there is a thirst for knowledge about African heritage that has propelled heated debates about the adequacies of American education. These African ancestral remains have presented both a challenge and opportunity to simultaneously address these issues [Research Design Subcommittee, 6 August 1993; see also Appendix A)]

Today the remains of our ancestors present themselves, literally risen from their graves, during a time of social and emotional strife, when inspirational uplift is most needed in the African community, when evidence of the significance of racism in the United States needs desperately to be brought to bear in the minds of all persons, and during a time when knowledge about the African heritage is both distorted and inadequate. The memorialization of the African ancestral remains presents an opportunity to address these issues [International Reinterment Subcommittee, 6 August 1993].

This is one of many examples of widely differing views, often along racial lines, of the research effort. In this instance, the ACHP raised formal objections to African Americans defining the significance of the African Burial Ground for themselves and for addressing their research effort to their own traditions of critical scholarship. Why, one might ask, are nationally or ethnically specific schools of thought such as "British social anthropology," "the Boasian school," or "French structuralism" acceptable avenues to follow, but influences of an African American school of thought are not? Perhaps the problem was simply the lack of familiarity regarding black intellectual traditions. The research team drew from the tradition of corrective scholarship (vindicationism), synthe-

sizing what seemed useful in these and other ideas and taking a progressive approach to knowledge. As Chapter 3 will make clear, this is quite distinct from the classical orientation of what is often represented as Afrocentrism and Afrocentricity (see critiques by Blakey [1995]).

These ideas, in the context of the earliest, largest, and most publicly visible archaeological site in the United States, put African American bioarchaeology in the forefront of anthropological research for the first time (Blakey 2001).

The site's visibility was also a result of the public's struggles that were required to stop excavation. The ensuing controversy was viewed by the descendant community as a continued refutation of African American humanity and dignity. This attention to the site was also the result of the powerful revelations that the excavation and the research team's initial findings produced about a past of African enslavement and African contributions to nation building that had been buried and hidden from the American consciousness (Blakey 1998a). Indeed, the educated public had long been taught that there had been few blacks and no slavery in the American North. Now the undeniable contradictory evidence confirmed the African American vindicationist critique of pervasive Eurocentric distortion of American and world history.

Report Scope, Limitations, and Future Directions

Much has been accomplished with the approximately \$6 million in federal funds awarded to Howard University for the New York African Burial Ground Project research. This document is the skeletal biology component of the three reports; the others cover the written history of these New York Africans (Volume 3 of this series, Historical Perspectives of the African Burial Ground) and the mortuary archaeological evidence (Volume 2 of this series, The Archaeology of the New York African Burial Ground). Together, these reports provide insight into how these people once thought and lived. Initially, the research design envisioned the incorporation of chemical and DNA research that would result in ancillary genetic and chemical studies reports. These five disciplinary reports were to serve as interim deliverables whose multidisciplinary data would be merged in an interdisciplinary, integrated report.

The research team's plan was to defer the complete DNA, chemistry, and histology research that it was proposing for support, because it would involve cutting samples of bone and teeth, and schedule it for the last two years of the project. Although GSA funded initial pilot studies (DNA, bone chemistry, histology, and amino acid analyses), it declined to fund the other proposed studies.

Hence, those components of the anticipated research were not undertaken for this report. Because the complete DNA and chemical studies were not performed, we could not pursue several key areas of research that depended on such data, including origins/cultural affiliation, individual geographical migrations, subadult sex determinations, ethnic and familial burial and social relationships, stasis and transformation in ethnic and familial spatial clustering, and studies of disease specificity—such as genetic anemia or specific treponemal diseases, for which the spirochete's DNA can be tested. However, such DNA and chemical studies have not been possible for most twentieth-century paleopathological studies, and thus this research project is not unusual in these respects. Data from our pilot studies have been useful, however, and our researchers have continued to conduct chemical and histological research with their own funding. Samples of bone and teeth have been archived for future studies.

The researchers in the skeletal biology component of the New York African Burial Ground Project, as with the other reports of the New York African Burial Ground Project, were influenced by the findings in other disciplines. The regular sharing of data across disciplines has produced an interdisciplinary dialogue. Especially helpful were the four-day Sankofa meetings, of which there were four, where two dozen project specialists participated, producing an interdisciplinary dialogue and common organizing themes and research questions (see Chapter 3 for the latter) that influence each disciplinary report. These organizing themes include origins and arrivals, life in New York, death in New York, and the meaning of ancestors to the descendant community. The present chapter focuses on those perceptions of ancestors. The remainder of Section I covers the theory that evolved for the entire project and the methods of the skeletal biology component. Section II is dedicated to the analysis of data pertaining to the origins and arrival of Africans in New York. Section III focuses on analyses of the conditions of life and death of the enslaved. Thus, the present skeletal biology volume is not meant to achieve the goals of interdisciplinary integration by itself, but has multidisciplinary influences that become evident. Because of the common organization of themes and questions, as well as 10 years of dialogue among specialists, the disciplinary reports such as this one are primed for integration into a single narrative about the New York African Burial Ground.

Organization of the Report

This volume is organized in four sections with 14 chapters (Sections I–III) and burial descriptions (Section IV). The first three sections constitute Part 1 of this volume. Part 2 consists of Section IV, Burial Descriptions, and Appendices A–C. Following this introduction, Chapter 2 provides a broad comparative context for the analysis of the remains from the New York site; the major reports on skeletal remains from African Diaspora archaeological sites in the Americas are reviewed. That chapter also develops a social historical and critical perspective on previous studies as background for the present study and its innovations. Chapter 3 describes the theoretical orientation of the project as a newly evolved program that is served by adherence to public accountability, a critique of the politics of history, publicly engaged scholarship, and aspirations toward rigorous multidisciplinary interrogation of the material data of the site within a broad geopolitical context. The complimentarity of ethical principles and high-quality information is emphasized as a benefit of this approach, which is catholic in its open-endedness in the application of many different theories that may be found useful for the diverse methods and research questions of the project. Finally, Chapter 4 describes the practical methods and work organization required for data collection in the laboratory. The analysis and interpretation of those data are taken up in the remaining chapters of this report.

Section II focuses upon the origins and arrival of Africans in eighteenth-century New York City. Chapter 5 examines the available biological information that verifies the African genetic backgrounds of the archaeological population. Fatimah Jackson and her colleagues advance theory, methods, and results related to estimation of the societal origins of the African Diaspora. The results of the morphological, chemical, and molecular studies are more extensive than are usually found in reports on sites of this kind (see Chapter 2) and give us a good idea of the range of origins of this sample. Yet, this chapter also demonstrates the much greater potential for DNA

analysis, towards which the theoretical development of this project continues to point. The New York African Burial Ground Project has stayed on the routes mapped out in the research design. Members of the research team, along with our students and interested colleagues, plan to continue on this course in our academic institutions over the coming years, supported by funding that we will seek from various intramural and extramural sources for proposed research. Bone and dental samples were prepared by the project with permission of the descendant community for these purposes. Therefore, for the components of the research plan that were not funded, we report on some of the project's contributions to theoretical and methodological developments toward such goals as the utility of DNA and chemical methods for estimating African American origins, the interest in which continues to grow among scholars and the public. Chapter 6 takes another approach to origins, applying new methodology to ascertaining the places of birth and geographical movements of the individuals who were buried in New York.

Chemical sourcing data derive from exposure to different proportions of chemical elements that characterized the different environments to which individuals were exposed during their lifetimes. Alan Goodman and his associates have discovered some of these chemical signatures in the teeth of individuals in the New York African Burial Ground sample that suggest where these individuals spent their childhoods. Modest alternative funding, the time of volunteers, and in-kind facilities partially supported these important studies. Although their potentials have not been fully realized, these DNA and chemical studies of the origins of the people in the burial ground have provided very useful information. Although doubted by many (see "Comments on the Draft Research Design for Archaeological, Historical, and Bioanthropological Investigations of the African Burial Ground and Five Points Area, New York, New York," GSA, Region 2, 1993) when first proposed, these chapters, we believe, make it clear in a material way that the proposals we advanced years ago were on the cusp of a wave of technology, and hence our ideas have been used to good purpose.

Chapter 7 reconstructs the structure of the New York African population using data on the sex and age estimates on more than 300 well-preserved skeletons. These data constitute the first and only systematic information on death rates among enslaved Africans in New York City. Information about migration and population growth—with implications for fertility—is generated

on the basis of census records and other historical sources. In Chapter 13, these patterns of life and death described by Lesley Rankin-Hill, Michael Blakey, and their colleagues, are explained as resulting from political and economic forces, not only in New York, but throughout the Atlantic world. Michael Blakey and the coauthors of Chapter 8 analyze dental enamel defects due to the disrupted growth of teeth, which resulted, not from local problems in the mouth, but from generalized diseases and malnutrition. The results show high stress during childhood. These authors begin to explore comparisons of those known to have been born in Africa with those of unknown birthplace (probably a mix of African and American born).

Dental pathology is examined in Mark Mack's study of caries and abscesses in Chapter 9. These pathological conditions represent the infectious effects of carbohydrate-rich food, sugars, and poor dental care. These indicators also provide dietary information based on the local effects of food affecting the mouth during the consumption of meals. However, oral diseases may also burden the immune system's responses to other diseases in the body.

Chapter 10 reveals the remarkable similarity between the bony indicators of infectious disease rates and nutritional deficiency found in New York and in the small series of skeletons from Rathbun's (1987) South Carolina site. In addition, Christopher Null and his coauthors examine active and healed periosteal lesions, representing generalized infection, to show differences by age and sex. Special attention is given to treponemal diseases that connect New York to other regions and populations in the wake of European colonialism. Comparisons are also made with nineteenth-century Philadelphia and post-Reconstruction wage laborers.

The next set of chapters continues the examination of "Life and Death in New York." Chapter 11 focuses on the musculoskeletal effects of the mechanical forces of work and trauma. Cynthia Wilczak and her group found patterns of work stress evidenced by spinal and limb joint degeneration among men and women in the African Burial Ground community. Enlarged muscle attachments and other musculoskeletal stress markers (MSMs) also demonstrate that arduous labor had characterized the lives of both men and women. Some evidence may point to different kinds of work among some individuals within these groups. However, it is not materially clear just how different the work of many men and women had been. Traumatic fractures that occurred near to the time of

death are common in the population. Comparisons are made with studies of African American archaeological sites in different work settings that show a number of associations between the effects of work in New York and those on a South Carolina plantation.

In Chapter 12, Susan Goode-Null and colleagues examine childhood growth using dental development as a proxy for chronological age. They find evidence for slowed, disrupted, and stunted growth in long bones among the New York African Burial Ground sample when the results are compared against a model of current growth standards. These researchers reference a broad range of pathological, nutritional, and mechanical factors that relate to the delays that they found in the physical growth and maturation of the enslaved children interred in the New York African Burial Ground. The thirteenth chapter, as previously mentioned, returns to demographic analysis, but this now considers the data within a broader politicaleconomic scope. Comparative analysis confirms the presence of unusual and previously unrecognized patterns of early death among the captive African community of early New York. Mortality data on the contemporaneous English slaveholding population are from Trinity Church burial records, organized and formatted for analyses by the New York African Burial Ground Office of Public Education and Interpretation in New York. There are some stunning comparisons

of the massive population-wide effects of slavery. Slaveholders and African captives exhibit opposing demographic trends of privilege and abuse. This section ends with a synthesis of the report's findings in Chapter 14.

Section IV consists entirely of descriptions of individual burials by Rankin-Hill and her associates at the University of Oklahoma and the College of William and Mary, rendering a brief profile of each individual's case from data contributed by the various studies undertaken in this project.

New York's enslaved African population was highly stressed by all accounts. Specific variations in the skeletons have provided insight into certain aspects of the living experience of this otherwise poorly documented community of America's founders. The skeleton mainly imparts to us the physical quality of life against which an individual's social and psychological struggles and accomplishments may be appreciated. There is much that paleopathology cannot reveal, but skeletons offer leads to patterns and details of this human story that are absent in other lines of evidence; it is the combination of different lines of evidence that makes the New York African Burial Ground Project most exciting. This report constitutes the final step in the skeletal biology research team's study under the auspices of the GSA.

CHAPTER 2

History and Comparison of Bioarchaeological Studies in the African Diaspora¹

Michael L. Blakey

This chapter surveys the full range of bioarchaeological studies conducted on African Diaspora sites in the Americas, thus providing a comparative context for the New York African Burial Ground. Skeletal data on people of African descent living under diverse conditions throughout the Americas are described to serve as a basis for comparisons with the burials that are studied in the African Burial Ground. These earlier studies used theoretical approaches different from those we employ. This history of diverse, evolving theoretical approaches is examined as a basis for understanding the scientific and societal implications of the research team's particular synthesis of theory (described in Chapter 3).

The review undertaken here is organized as a social history, emphasizing the interaction of diverse traditions of scholarship with the societal forces that have molded bioarchaeological interpretations of the African Diaspora. It is through the application of such an emphasis that our distinctive synthesis of analytical approaches will be clarified and placed in historical context. This chapter also surveys the major research findings of bioarchaeological studies of the diaspora in North and South America and the Caribbean. In addition, by simultaneously examining the societal influences of analytical approaches and the data these approaches have generated, social perspectives and scientific limitations become more apparent. It is also hoped that the advantages of the present study's perspectives, affording more dynamic interpretations of data and unusual public involvement, will thus be made more obvious.²

No condition has influenced the New York African Burial Ground Project more than the unique relationship that developed between this project and the African American public. Subsumed within this relationship is the infusion of mainstream bioarchaeology with the approaches to African Diaspora studies that had been developed by members of the diaspora themselves. In order to illustrate differing perspectives and the ultimate synthesis promulgated here, the tradition of African Diaspora scholarship is summarized; this is followed by a discussion of social history and a survey of bioarchaeological investigations that have run parallel to diasporan scholarship. These disparate ways of explaining black history form the basis of controversy at New York's African Burial Ground. Our project seeks to resolve those differences with a synthesis of the compatible aspects of diasporan and bioarchaeological theory and method. We begin with definitions of key concepts.

The African Diaspora in the Americas encompasses the populations, societies, cultures, and states created by enslaved Africans and their descendants. As these broadly dispersed legatees of forced migration came to conceive of themselves as recipients of a coherent set of historical experiences and affiliated identities, "diaspora" took on common meanings both as lived reality and as a subject of scholarship. The African Diaspora, as currently conceived, is more a concept than either a technical specialization or geographical area of study. According to Harris (1993), "the African Diaspora concept subsumes the global dispersion (voluntary and involuntary) of Africans throughout history, the emergence of a cultural identity abroad based on origin and social conditions, and the psychological or physical return to the homeland, Africa. Thus viewed, the African

¹ The present chapter follows and extends the article by Michael L. Blakey, "Bioarcheology of the African Diaspora in the Americas: Its Origin and Scope," published in the *Annual Review of Anthropology* (2001 30:387–422).

² I am very thankful for the research assistance of David Harris who, with the help of Tomlinson, obtained copies of all of the literature in African diasporic bioarchaeology for my review. Thanks also to the many helpful colleagues who sent site reports and articles in the less accessible journals.

Diaspora assumes the character of a dynamic, continuous, and complex phenomenon stretching across time, geography, class, and gender." African Diaspora or Black Studies programs in today's universities emerged as interdisciplinary area studies with the above foci and motivations.

African American biohistory "has evolved into the study of both the biological and sociocultural factors that have affected and/or influenced the health, fertility, morbidity and mortality of African Americans in the New World within an historical context. African American biohistory is a meeting ground for the many disciplines that focus on the health and disease of African slaves and their descendants in the Americas" (Rankin-Hill 1997). Principal among these disciplines are history, archaeology, and biological anthropology. Although Rankin-Hill uses the term to encompass both historical and historical archaeological studies, I prefer to consider "biohistory" as research that relies primarily upon written records or anatomical collections, reserving the term, "bioarchaeology" for studies that focus upon excavated archaeological populations. Overall, the traditions of American history, archaeology, and physical anthropology have continued to merge in the development of these specializations.

By the above definitions, African American bioarchaeology and biohistory might have been subsumed under the broad umbrella of diasporic studies, but, for various reasons, that has not happened. During the last 20 years, these fields have evolved as distinct research traditions. Juxtaposed and periodically crossfertilizing, these separate venues also reflect different ethnic and social vantages on the black experience, emphasizing distinctive ranges of methodology and motivations. Diasporic studies developed directly from the history of African American and other diasporic scholarship and rarely incorporated the tools of archaeology and biology. Bioarchaeology developed from two anthropological disciplines that, like biohistory, had evolved from Euroamerican and other traditions of "white" scholarship that rarely incorporated the social science, humanistic, and activist understandings of diasporic studies. Both traditions, however, developed within a common world of intellectual, social, and political change that connected and divided them.

These segmented trends, fostered by a racially segmented American society, have recently been merged in our study of the eighteenth-century African Burial Ground in the City of New York. This merger might not have been possible, were it not also for the recent emergence of biocultural and publicly engaged anthro-

pologists whose liberal-left formulation achieved a new compatibility with diasporic intellectual traditions. In contrast, there remains a distinctive forensic tradition that racializes and dehistoricizes the African Diaspora experience. We examine next the history of each of these traditions and the data they generated on the African Diaspora past.

Origins of African Diaspora Studies

The first studies of the African Diaspora were initiated by Catholic priests, commissioned by the Spanish Crown, who deviated from their assignment of investigating Native Americans and developed initial reports of the cultures and languages of Africans enslaved in the West Indies. At the end of the legal British trade in human captives from Africa, British studies were also commissioned (Drake 1993; Herskovits 1941) which, taken with the detailed commercial data on enslaved Africans throughout the Americas, serve to anchor our knowledge of the diaspora during slavery. For example, an important new database at Emory University has amassed many of the diverse colonial records on the American slave trade.

Yet the accounting of chattel is an incomplete human history. The record of the human experience of Africans in the Americas during slavery is sparse, afforded mainly by the initial writings of people who had been enslaved. These writings, beginning 1772–1815, were primarily narratives about slavery (with comments on life in Africa), which focused on the humanity of blacks and the inhumanities foisted upon them by whites in the works of freed and escaped captives, such as Morrant, Gronniosaw, Cugoano, Equiano, and Jea (Gates and Andrews 1998; also see Harriet Jacobs 1861), often arguing their cases with moral fervor. Later, the narratives of abolitionist Frederick Douglass (1854) reported his life in slavery and damned the institution in a more analytical vein. In 1854, he also attacked Morton's, Agassiz's, Nott's and Gliddon's craniometry and racist Egyptology with sophisticated biocultural analyses, to which we will later return. With the publication of Douglass's "The Claims of the Negro Ethnologically Considered," an African American genre of critical, vindicationist, and activist scholarship had begun that would form a fundamentally distinctive diasporic scholarship. He raised his environmentalist argument against the contrasting Euroamerican racial reductionist scholarship at the origin of American physical anthropology (see also Hrdlička [1918] on Morton's significance). Meanwhile, Antenor Firmin (1885) of free Haiti authored a scientific rebuttal to French racial reductionism with a holistic analysis (biological and cultural) in support of racial equality. The Parisian academy appears to have completely ignored or disregarded his 600 pages of elegant thought (Fluehr-Lobban 2000), but it remained part of the Haitian cannon for a century.

By 1861, Martin Delany, an African American motivated by missionary interests and African repatriation, reported on the Niger Valley Exploring Party and the relation of its findings to the interests of "the Coloured People of the United States" and African repatriation. In the same year, Alexander Crummell expressed a nascent Pan-African vision in The Relations and Duties of the Free Colored Men in America and Africa. The American Negro Academy, which he founded in 1897, served as a think tank for African Americans interested in the uplift of a global black race. W. E. B. Du Bois, a charter member of this Academy, published the first empirical urban ethnography in 1899, The Philadelphia Negro. Du Bois served for more than seven decades as the dean of African American social historical research, emphasizing Pan-Africanism, civil rights, and socialist organizing. The Atlanta University Studies, which Du Bois began in 1898, constituted a comprehensive program of sociological and historical research on blacks, and his editorship of the National Association for the Advancement of Colored People (NAACP) journal Crisis applied social science to the civil rights effort at the beginning of the twentieth century (see Harrison 1992 and others in this special issue of *Critique* of Anthropology devoted to Du Bois's influence in anthropology). His Jamaican-American contemporary of the early twentieth century, Marcus Garvey, a student of African and Biblical history and head of the Universal Negro Improvement Association, was far more concerned with building an ideology and organizing diasporic unity and African repatriation.

African American research was nearly always critical, for it began from the observation that white racism had distorted the historical record. Du Bois (1915) began an early study of Africa and its diaspora, stating that the "time has not yet come for a complete history of Negro peoples. Archaeological research in Africa has just begun, and many sources of information in Arabian, Portuguese, and other tongues are not fully at our command; and too it must frankly be confessed, racial prejudice against darker peoples is still too strong in so-called civilized centers for judicial appraisement of

the peoples of Africa." The problem of an ideologically distorted Africana past continued to inspire a search for information by diasporic scholars, creating a large body of vindicationist literature (Drake 1980, 1993).

During the first part of the twentieth century, Zora Neale Hurston (Hemenway 1977; Mikell 1999) conveyed the complexity of African American and Caribbean cultures through literary works based on ethnology and folklore. The Haitian Marxist ethnologist, Jacques Roumain (Fowler 1972) helped found the Negritude movement that paralleled the "Harlem Renaissance" in Francophone Africa and the Caribbean. He wrote about Haiti in a humanistic vein similar to Hurston. Another Haitian scholar activist, Jean Price Mars, founded the Society of African Culture and helped found *Presence* Africaine, the scholarly organ of black Francophone intellectuals, located in Paris. It was there in 1955 that Senegalese scholar Cheikh Anta Diop first published portions of what would become the most influential classical archaeological and linguistic analysis of the Africanity of ancient Egypt among African and diasporic readers (Diop 1974). Another African American anthropologist, Katherine Dunham, through the vehicle of dance, studied and performed the common and deviating threads of African Diaspora culture and religion in Brazil, Haiti, Cuba, and the United States. African American anatomist and physical anthropologist W. Montague Cobb focused on issues of evolution, race, racism, and health care in the United States in the middle third of the century, combining his biology with humanism and politics. Fernando Ortiz (1929, 1947) conducted ethnographic work and a bioarchaeological study on the African influences of Cuba. Black anthropologist Irene Diggs, having worked both with Ortiz and Du Bois, covered a broad range of U.S. and Latin American subjects (see Bolles 1999). African American historian William Leo Hansberry was the first person to receive a degree in African Studies at Harvard before taking a faculty position at Howard University. However, it was Melville Herskovits who would start the first African Studies program at Northwestern University, following a 2-year visiting position at Howard where he studied "race crossing" (Herskovits 1928). In 1916, historian Carter Woodson, also at Howard University, established the *Journal of Negro History*. The organization for which this journal was the principal organ, the Association for the Study of Negro Life and History (today the Association for the Study of African American Life and History) began "Negro History Week" (today Black History Month) in order to disseminate the history of peoples

of African descent. The Fisk- and Harvard-educated historian, John Hope Franklin's seminal work, *From Slavery to Freedom: A History of Negro Americans* (1947), should also be noted among these pre-1960s contributions to diasporic studies.

This is but a small sample of the contributors of that period, suggestive of the breadth and focus of domestic and international work toward diasporic studies. With the exception of the enigmatic Hurston, all were involved in political activism and many were involved in the Pan-Africanist movement that sought to free the continent of colonialism and to unite its diasporic peoples. Their scholarly efforts were to preserve and report on African cultural persistence and creativity on the continent and in the Americas, to revise what they saw as Eurocentric distortions of the Africana world, and to foster an understanding of common cultural identity, albeit at times, incorporating an essentialized racial identity not unlike contemporary European romanticists.

White archaeologists and physical anthropologists had initiated no such journals and research organizations by the 1960s, nor did they publish in black journals. But some Euroamerican social and cultural anthropologists and historians did use the *Journal of Negro History* and *Phylon* (edited by Du Bois at Atlanta University).

Franz Boas's interest in African cultures provided an important foundation for American scholarship in this area. His empirical and cultural determinist approaches were both welcomed by, and in conflict with, African American scholarship, based on how the Boasians did and did not relate to civil rights goals (Baker 1998). Colonial European anthropological research in Africa was quite abundant but had limited the involvement of American anthropologists until the post-colonial and Cold War era breached the proprietary wall (see Mwaria 1999:280; an example of this change is a meeting between Evans Pritchard, Melville Herskovits, and a young Elliot Skinner at Oxford). Boas's student, Melville Herskovits (1930, 1941; see also Drake 1993:481), along with Roger Bastide (1967), were among the first non-African Americans to take an interest in a "hemisphere-wide synthesis" of black life in the diaspora. In the Boasian vein, their work focused on the persistence of African culture, acculturation, and miscegenation without devoting serious study to social and economic discrimination (Drake 1993).

Herskovits, like many diasporan scholars, poignantly recognized that the major corpus of existing popular and scholarly literature on African Americans constituted a "myth of the Negro past." In sum, this mythology conspired to present blacks as "a man without a past" who, being without cultural contributions of his own, had been readily and completely acculturated by Europeans. He intended to expose and correct the myth by undertaking the study of "Africanisms" among disaporic peoples (Herskovits 1941).

Yet the liberal white tradition of scholarship represented by Boas and Herskovits was also distinguished by a patronizing and instrumental approach to black scholars who were often already advanced in their African Diaspora interests. Boas took the conventional approach of using Hurston to gain access to data from black communities (Drake 1980; Willis 1999 [1972]), and Herskovits apparently discouraged African American students from pursuing diasporic subjects. Tellingly, some very prominent black scholars who had studied with Herskovits at Northwestern University (Johnnetta Cole and Joseph Harris, personal communication 1989) sought out other mentors because they had the distinct impression that Herskovits did not view blacks as the equals of whites. He also deterred black students from studying in Africa because it was too similar to their own culture (Mwaria 1999:280). A counterintuitive rationale from the perspectives of most African Diaspora intellectuals, the anthropological characterization of the etic (outsider's) perspective as "objective" had served to empower the voices of white anthropologists concerning the non-white world where they worked. The sense that Boas (see Baker 1998; Willis 1999 [1972]), or his most renowned former student, Mead (see Rankin-Hill and Blakey 1994), were patronizing toward and unaccustomed to the black world, punctuates the history of African American relations with these relatively antiracist scholars. Despite these American social constraints, some major Euroamerican cultural anthropologists and historians referred to the publications of the African Diaspora intellectuals, and vice versa.

These conflicts of liberal racism might explain partially why intellectual cross-fertilization between Northwestern and Columbia Universities (see Sanday [1999:248] on William Willis's experience at Columbia) tended to proceed through literary interaction, but the collective use of primary data by black and white scholars occurred at the University of Chicago during the same period. It is also important that the sociologists and social anthropologists at Chicago were willing to examine social and economic inequal-

ity, unlike the cultural focus of Northwestern. The exposure of the "Myth of the Negro Past," however, was meant to undermine the ideological legitimation of social and economic inequity as its contribution to Myrdal's study, *American Dilemma*, coordinated at Chicago. Rankin-Hill (1997) has suggested that Boas's motivations were similar to those of Herskovits.

Arguably, the Boasians and Chicagoans were each emphasizing different aspects of the same problem in segmented and competitive ways. The diasporic scholars were involved to varied degrees in both camps. But the diasporans had a long-established interest in culture on their own, which Herskovits's program overlapped. The diasporic scholars, being structured into a single "racial" intellectual community, drew upon each other and all of the scientific, humanistic, artistic, and political aspects of their subject, crossing the lines of disciplinary segmentation and camp competition that were hardening in white academia. The Harlem Renaissance, from which this work got its energy, is well named, not only because it ushered in a cultural rebirth and the "New Negro," but for the pre-Enlightenment sensibility manifested in the breadth of interdisciplinary synthesis openly advocated and developed in the work of individual scholars. Du Bois's seminal work, Souls of Black Folk (1903), is an equally influential example, as is the corpus of Montague Cobb's physical anthropology (Rankin-Hill and Blakey 1994). The Harlem Renaissance had taken New York and other major cities by storm in the 1920s, attracting masses of whites to its elevated and seemingly exotic African American culture. Surely this movement had stimulated the interests of the Columbians, as did the rise of antilynching campaigns that were visibly associated with Harlem life. Yet whites did not participate in the prolific writings of this Renaissance, and blacks did not publish in the leading (white) anthropological and historical journals.

By the 1960s, some Euroamerican cultural anthropologists were beginning to expand their thinking to include both a diasporic scope and critique of inequality. Norman Whitten (with a degree from North Carolina, Chapel Hill) and John Szwed (with a degree from Ohio State University) organized the first anthropological symposium on the diaspora that included white and black contributors. This led, 3 years later, to the publication of *Afro-American Anthropology: Contemporary Perspectives* (Whitten and Szwed 1970). Along with the work of Sidney Mintz (1951, 1974)—(with a degree from Columbia University)—in the Caribbean and Marvin Harris and

others, who undertook the State of Bahia-Columbia University Community Study Project in Brazil (Hutchinson 1957), one began to see studies of the economic aspects of diasporic subordination conducted by Euroamerican anthropologists three generations down the Boasian lineage.

From 1930 to 1960, the University of Chicago was frenetically engaged in the social anthropology and the sociology of African Americans. This "Chicago school" emphasized the study of the problems of socioeconomic inequality, mostly in urban settings. Here, sociology and social anthropology merged in a way seldom seen in the United States. The participation of African American graduate students was more pronounced at Chicago than at Northwestern, and included such luminary graduates as St. Clair Drake (Baber 1999; Bond 1988), E. Franklin Frazier (1939; see Edwards 1968), Charles Johnson, Mark Hanna Watkins, and Allison Davis (who would join the department's faculty as "the first African American with a Ph.D. to hold a tenure-track position at a predominantly white university in U.S. history," receiving tenure at Chicago in 1947 [Browne 1999:173]). Drake and Clayton's Black Metropolis (1945), about a black Chicago community, is essentially a Du Boisian hybrid of the Chicago school and cited mainly the African American authors in urban studies of the previous 50 years. Most of these graduates pointed to the mentorship of W. Lloyd Warner (both at Harvard and Chicago) as the senior faculty member under whom they had worked. The Chicago school was not Boasian, but rather a synthesis of British social anthropology, sociology, and African American traditions of scholarship. It may have been the most collaborative academic program of white and black scholars in the white world, either before or after its moment. From it, Drake would expand upon his scope to include a broad sweep of diasporic space and time and became a framer of the concept of an African Diaspora. His last two-volume treatise, Black Folk Here and There (Drake 1987, 1990), was more than a nominal tribute to Du Bois's Black Folk Then and Now; it was a synthesis of global data on the social significance of color for African descent groups, beginning in ancient Egypt and ending in the twentieth century.

Throughout the early development of research on the African Diaspora, the members of that diaspora who framed that research approached the subject with both interdisciplinary and activist perspectives, whether missionary, integrationist, Marxist, or Pan-Africanist. Drake (1980) described this African American intellectual tradition as "vindicationist," as meant to correct the omissions and distortions of the mainstream Eurocentric tradition. The research of some Euroamerican anthropologists in the Boasian lineage was useful in those efforts. The interethnic collaboration at Chicago had policy implications most clearly evident in the governmental use of Myrdal's American Dilemma (1945), which was funded by the Carnegie Foundation. Yet, black scholars, as they had done since the antislavery movement, maintained a frontline stance by asserting the need to increase this work against the prevailing denigration of the black experience that was systematically perpetrated by Western education. Frederick Douglass had elucidated an ideological myth of the Negro past nearly 100 years before Herskovits, and African American efforts to destroy the myth continued to evolve intellectual, organizational, and activist dimensions within the future black world.

Those mentioned above are prominent examples of the major sources of in-depth research on people of African descent from the mid-nineteenth century to 1960. Their research, humanistic expression, and political activism attended the global emergence of the African Diaspora from slavery, colonialism, and segregation. It deliberately contributed to an understanding of people of African descent and their relationship to the world that would empower those transitions and adjustments. A formal concept of diasporic studies, according to Harris (1993), achieved momentum in 1965 when the International Congress of African Historians convened in Tanzania and included in its program a session entitled, "The African Abroad or the African Diaspora" and continued as a recurring theme of United Nations Educational, Scientific, and Cultural Organization (UNESCO) publications in several languages. By that time, the emergent Pan-Africanist Congresses of African, Caribbean, and African American scholars, humanists, and political leadership were influencing the immediate post-colonial realities of the United Nations. The civil rights, black power, and black consciousness movements of the United States during the period between World War II and the end of the Vietnam War were fueling and fueled by diasporic Black Studies programs. Although many others should be credited, the intellectual leadership of anthropologists St. Clair Drake (Stanford) and Elliot Skinner (Columbia) and historian Joseph Harris (Howard) should be mentioned in the emergence of an academically grounded concept of the African Diaspora.³ During the late 1960s and 1970s, scores of Black Studies programs and departments had sprung up at recently desegregated North American colleges and universities as black students physically took over campus buildings for that purpose. Although there are many Euroamerican and other scholars working in African American Studies programs at predominantly white institutions in the United States, those programs nevertheless remain the most likely academic home for black faculty and a sociocultural refuge for black students found in those majority institutions.

The articulation and disarticulation between these developments and the field of bioarchaeology is a major theme addressed below. This summary of intellectual history provides a reference point against which to contrast the development of an African Diaspora bioarchaeology which, although recently impacted by black and cultural scholarship, began along a segmented trajectory of white ecological and racial scholarship that has structured the study of black people very differently. That structuring has taken place, in fact, virtually without recognition of the older and deeper intellectual traditions described above. Archaeology and physical anthropology have experienced even less interaction with the black intellectual traditions than has American sociocultural anthropology. Now I turn to the mainstream traditions of physical anthropology and archaeology whose branches also penetrated African Diaspora research during the 1970s.

Physical Anthropology and the Negro

African American bioarchaeology as it has usually been practiced combines skeletal biology (principally the specialization in paleopathology or the

³ Blacks took what they could use at Northwestern's African Studies Program and moved on to develop their own segregated turf. Joseph Harris, as an example, would ultimately extend his scope from Ethiopia to West and Eastern African "Return Movements" (1993). He organized a conference on the diaspora in 1979 (mainly involving historians from the diaspora), which would lead to the seminal volume *Global_Dimensions of the African Diaspora* (1993). His scholarship helped mold a diasporic focus for the History Department at Howard, to which he devoted his career.

study of health and disease in ancient populations) and historical archaeology (the archaeology of the post-Columbian era in the Americas). Skeletal biology has a longer history of concern with people of African descent in the Americas than has archaeology, and for most of that time, physical anthropology followed a different trajectory from diasporan research; physical anthropology had little, if any, concern for culture during its first 100 years. Its focus upon racial differences meant that African descent populations, constructed as Negroes, Negroids, or biologically black, were considered an important group for comparisons with Caucasoids, Caucasions, or whites, who in turn were regarded as a biological standard of normalcy.

This racist nineteenth- and early-twentieth-century history of physical anthropology has been extensively critiqued (Armelagos and Goodman 1998; Blakey 1996; Gould 1996; Smedley 1993; and others). It is now sufficient to state that, apart from specific differences, physical anthropologists classified human populations racially and created hierarchical rankings of races. Whether these were evolutionary or pre-evolutionary rankings, European descent groups (Caucasoids) were placed at the top and Africans (Negroids) at the bottom, with Asians and Native Americans (Mongoloids) usually intermediate. Although racial classifications were at times more diverse, from Linnaeus's eighteenth-century taxonomy until the issuance of the UNESCO Statement on Race in 1951, this hierarchy was characteristic of Euroamerican and European physical anthropology. It was typical of the thinking and policies of the general white population of which these physical anthropologists were part.

The emphasis on race was part of a broader conceptualization of objective science defined by naturalhistorical explanations of variations in presumed natural biological categories (e.g., race). The goal was to develop a science of "man" grounded in the same principles that were applied to zoology, biology, anatomy, and medicine, the fields from which most physical anthropologists initially emerged. The resulting science, however, was clearly not objective. It served as a means of ideological production that naturalized and thus justified colonialism, racial segregation, eugenics, class, and gender inequity. Viewed through this racial lens, human populations had a phylogeny from which culture and history were mere adaptive by-products. The lower the type, the less interesting were its nearly extinct behaviors. The highest types

received romantic eugenical characterizations, as was the case for certain sub-races of Western Europe (Grant 1916; Ripley 1899; Stoddard 1921).

African Diaspora cultures and history held no interest for physical anthropologists and archaeologists. This was especially true during the nineteenth and early-to-mid twentieth centuries in the United States, which had no African colonies to understand and manage, but instead sustained a system that maintained the subjugation of a black racial caste. "American Negro" was synonymous with former slaves who were thankful for the opportunities that Christianity and acculturation had afforded them to emerge above their assumed absence of prior civilization, as in Douglass's and Herskovits's American myth. There were no contradictions between this myth and the physical anthropological study of the Negro because the naturalized category of race was conceived of as acultural and ahistorical. Physical anthropology was the primary author of the myth.

Skeletal research on African descent populations (as racially black or Negroid) began with Samuel Morton's craniometry in the 1830s, which was popularized in 1854 by Types of Mankind, the work of Josia Nott and George Gliddon. Gould (1996) made the point that Morton's racial ranking was taken as evidence that then enslaved African Americans had the mentality of children who were better off under white authority. As mentioned earlier, this work initiated an immediate counterargument from the leading African American activist intellectual of that time, who added that the book's characterizations of Egyptians as Caucasoid were meant to deny the existence (and possibility) of civilized accomplishments among African peoples (Douglass 1854). Types of Mankind, which interpreted crania, was a nascent bioarchaeological interpretation in a classic racial-deterministic vein. The book was the first to popularize the American field of physical anthropology. Its use of archaeology initiates the sad fact that, from the nineteenth century until the present, the Nile Valley has been the only area in Africa on which a body of bioarchaeological literature has developed (Armelagos et al. 1971; Aufderheide and Rodriguez-Martin 1998), perhaps because dynastic Egypt continued to be viewed as Caucasoid, with Nubia as its Hamitic ("brown Caucasoid"), slave-bearing neighbor (Bernal 1987). Exceptions to this are the study by Armelagos (1968) that had a paleopathology focus but reflected a prescient bioarcheological orientation and the work of Greene (1972); both of these show African continuity in the Nile Valley. Although most of the research has centered in the Nile Valley, there is presently work in southern Africa.^{4, 5}

Measurements of the skull meant to show a racial evolutionary basis of social inequality (having evolved from pre-scientific phrenology) continued as the focus of the physical anthropology of the Negro until World War II. Craniometry would continue as the focus for descriptive racial taxonomic studies in colonial Africa (de Villiers 1968; Oschinsky 1954; Tobias 1953), as in American studies of racial admixture (Pollitzer 1958) and in forensic studies for the identification of crime victims and missing persons. The Smithsonian's leading physical anthropologist, Ales Hrdlička, was assigned the task of reviewing "all of the work on the Negro" in 1927 for the National Research Council Committee on the Negro (Hrdlička 1927). His bibliography included sociological works of Du Bois and Frazier and the historical work of Woodson and other African American writers. In addition, an extensive list of work by white scholars was included that analyzed what was then termed, "the Negro Problem." Hrdlička (1927:207) viewed the previous work as shoddy, not rigorous, and "tinged with more or less bias for or against the Negro." He proposed that future research should focus on the Negro brain (an organ he studied) which, after all, was the "real problem of the American Negro." He then continued work on measurements of the skulls of 26 living African Americans found at Howard University and fudged his data so that "the Full-blood Negro" appeared to be of inferior "mentality" (Blakey 1996; Hrdlička 1928). In fact, since Morton's time, the study of the Negro had been focused upon recently diseased in anatomical collections or on living populations. Davenport and Steggerda's eugenic research in Jamaica in 1929, for example, claimed to show the deleterious effects of miscegenation.⁶

Beginning in 1930, Earnest Hooton (Harvard) would follow Hrdlička as America's most influential physical anthropologist. Hooton's Pecos Pueblo study (1930) also initiated what has variously been called the statistical (Armelagos et al. 1971), paleoepidemiological (Buikstra and Cook 1980), or demographic (Aufderheide and Rodgriguez-Martin 1998:7) approach, which initiated the development of modern paleopathology, and started a research trajectory that continues today. During this time, however, the "Harvard-Washington [Smithsonian] Axis" (Spencer 1979) was at the core of a physical anthropology that was emphatically racially and biologically determinist (Blakey 1996). A substantial body of publications in modern paleopathology would not begin to emerge until the 1970s, and "1930s-type case reports" would persist even then (Lovejoy et al. 1982:334). Paleopathological data would characterize the core of African American bioarchaeological studies that emerged during the 1980s. Although a biocultural approach to paleopathology would begin then, the racial typological approach has continued.

The persistence of racial taxonomy has been most noted among forensic anthropologists who "in particu-

⁴ The most influential work on ancient Egypt among diasporans themselves is Cheik Anta Diop's *The African Origin of Civilization: Myth or Reality* (1974), first published as an article in *Presence Africaine* in 1955. Anta Diop's evidence interprets Egypt as the racially black classical center of African culture (also see Holl [1995] on Diop). His work continues to fuel Afrocentric (or Afrocentricity) scholarship popular within the African American community (Blakey 1995).

⁵ Recently, researchers at the University of Capetown have used isotopic analysis to demonstrate dietary change in the African victims of the wreck of the Portuguese slaving brig, Pacquet Real (Cox and Sealy 1997). Morris (1998) has examined dental modification in southern Africa from the early Iron Age onward. Perhaps these and other recent Cape Town studies will initiate an emergence of African bioarchaeology apart from the Nile Valley or the paleoanthropology of East African hominids. Human origins studies in Africa, like Nile Valley research, have traditionally sought to understand the origins of non-Africans. Textbooks and museum exhibitions usually shift from Africa (Australopithecines) to Asia (Homo erectus) to Europe (H. sapiens) attesting to the use of Africa (where evolution continues today) as only a precursor of modern Europeans. I was unable to identify a single bioarchaeological study in West or Central Africa, the regions most directly related to the origins of the American Diaspora.

⁶ An interesting twist is found in the work of Caroline Bond Day, an African American whose first degree was earned at Atlanta University. Afterward, she attended Radcliffe College, where she wrote a Master's thesis on mixed-race families in her native Georgia (Ross et al. 1999). Earnest Hooton of Harvard, her Radcliffe advisor, introduced Day in the resulting book as a "proximate mulatto." In A Study of Some Negro-White Families in the United States (Day 1932), she adopted a more sociological analysis of racial intermarriage than Hooton had expected. It was an uneven book, without an analysis of the relationship between the extensive biological and sociological observations; physical anthropologists made no use of it, and blacks were uncomfortable with it. Ross and associates (1999:45) attributed this in part to the fact that "Hooton's goals were different from Day's. . . . Day wished to stress the sociocultural similarities between a black middle-class population and a white middle-class population, while Hooton wished to stress the biological differences between these two populations . . . Day attributes differences in lifestyle to racial segregation rather than to any innate biological differences." Day was also a humanist who devoted much of her energy to dramatic and fictional writing and did not continue to conduct physical anthropological research.

When the sociologists and anthropologists at Chicago were investigating the social causes of urban violence and crime, Earnest Hooton (1939) conducted a nationwide investigation of the racial and anatomical bases of different types of crime that included a black genetic propensity for rape.

lar find the phenotypic criteria associated with race to have practical applications because they are frequently called on by law enforcement agencies to assist in the identification of human remains" (Jurmain et al. 2003:396). Furthermore, according to Jurmain et al.'s (2003) prominent physical anthropology textbook, such classification "is viewed as no longer valid given the current state of genetic and evolutionary science," and "[o]bjections to racial taxonomies have also been raised because classification schemes are typological" and are "inherently misleading because there are also many individuals in any grouping who do not conform to all aspects of a particular type" (Jurmain et al. 2003:396; also see Armelagos and Goodman 1998). Racial inequality is ostensibly no longer the point of current racial classification, but when racial attributions substitute for specific cultural affiliations and historical contexts, inequality is implied. When researchers involved in forensics choose to apply the same descriptive approaches to African American bioarchaeological sites (as in MFAT's work on the New York African Burial Ground or other research discussed later), their interpretations are then loaded with the 150-year legacy of the objectification and generalization of African Diaspora identities. African Americans are consequentially dehistoricized and dehumanized. As will be shown later, the New York African Burial Ground Project chose to vary from that legacy and offers a historicized interpretation even of biological data used to track geographical origins and cultural affiliations.

There were alternatives to the dominant racial deterministic trend in the early years of physical anthropology. Franz Boas, the liberal socialist anthropologist, examined living populations and argued for the plasticity of human biology and behavior. His actual focus (and direct target of critique) was the study of European sub-races (Boas 1911; see Blakey 1996). His general critique of racial determinism was used by African American activist scholars such as Du Bois for their antiracist efforts (Baker 1998).

Studies of new documented anatomical collections (macerated cadavers from the dissecting rooms of medical schools) gained momentum during the 1930s. As it happened, the largest series was completed at Case Western Reserve University by T. Wingate Todd, a liberal Scottish physical anthropologist who had been an officer among colored troops in Canada (Cobb 1939a). Todd's analysis of the crania in the Hamann-Todd collection showed environmental causes of differences in black and white cranial development. In

a presentation, which Todd delivered at a meeting of the NAACP (1937), he deduced that an equal potential for achievement existed in these "races."

T. Wingate Todd's liberal environmental analyses were furthered by W. Montague Cobb, his former student and an African American physical anthropologist who was professor of anatomy at Howard University from 1932 to 1969. Cobb (1936) used data from skeletal collections and living populations to show that biology did not determine the athletic acumen of blacks or whites. Furthermore, Cobb was one of the first physical anthropologists to use demographic data, within a synthesized evolutionary and social historical paradigm, to show high adaptability of the Negro against the adversities of slavery and racial segregation in the United States (Cobb 1939b) (Figure 9).

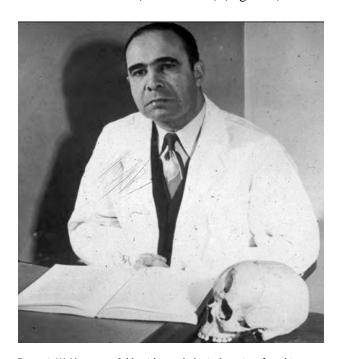


Figure 9. W. Montague Cobb with a pathological cranium from his documented anatomical collection at Howard University.

Cobb would later put his approach to physical anthropology and social medicine to service in the U.S. civil rights movement and the NAACP in the tradition of activist scholarship (Rankin-Hill and Blakey 1994). These studies, however, seem to have had very little impact on the development of physical anthropology.

Boas was opposed by mainstream physical anthropologists until after World War II, when anti-eugenic concerns swept the world and elevated the Boasian approach an advantage, fostering mainly cultural and biocultural anthropology. Todd remained based in anatomy, rather than physical anthropology. Cobb was best known for his medical and civil rights work in the black world, although interest in Cobb's anthropological approaches was rekindled at Howard during the 1990s.

Conception of African Diaspora Archaeology

Physical anthropology slowly began to incorporate modern paleopathology during the 1930s. The field remained steeped in its long tradition of the racial classification of African-descent groups, using this to explain and justify their social status. African American bioarchaeology would begin during the 1930s. But African American scholarship was not involved, nor was there a keen interest in the Africana world. Instead, it would grow from the interest of many physical anthropologists of that era in race and evolution, particularly as applied to African Diaspora skeletons that were being discovered by archaeologists who were actually looking for extinct pre-Columbian Indians.

In 1938, a team of Oxford archaeologists (funded by Northwestern and Columbia Universities) excavated one of the first bioarchaeological sites in the African Diaspora (Buxton et al. 1938). In 1939, T. Dale Stewart, who had long been Hrdlička's assistant curator at the Smithsonian Institution, responded to the article by Buxton and colleagues and to correspondence by E. M. Shilstone, who had made a related find in the British colony of Barbados (Stewart 1939). Stewart's position at the U.S. National Museum made him a likely expert on the racial identification of the curious remains of the one male African-looking skull found in an apparently Arawak (Taino) midden in Barbados and the two "Negro" skulls that were found on Water Island, St. Thomas, U.S. Virgin Islands. These were believed to be intrusive to the indigenous deposits that had been of interest to the archaeologists. Stewart argued that the Water Island remains were "Negro instead of Negroid" on cranial morphological grounds and concluded that they were therefore intrusive. The Barbados Negro showed a craniometric association with Stewart's Gabon data. Although the measurements showed some inconsistencies with African comparative data in both cases, they were "more in the direction of the Negro" (Stewart 1939:50). Buxton et al. (1938) commented on a similar situation reported by Duerden for a Jamaican site in 1897, in

which the craniometric methods seemed unreliable for explaining the presence of Africans among the remains of the Arawak.

With these studies, the physical anthropology of race assessment in diasporic archaeological populations had begun. Antemortem loss of mandibular incisors in Burial 40.1.2 and wedge-shaped filing of the maxillary incisors in Burial 40.1.1 from St. Thomas were consistent with distinctly African aesthetic practices; the unmodified cranial shapes at both sites were unlike the customary practice of shaping the skull in Tainos from Hispañola. From these facts, Stewart concluded that these were not the remains of indigenous people. Indeed, given the problems of determining population affiliation with only one or two skulls, the cultural data exhibited the most convincing qualitative distinction.⁷

There was, however, no serious consideration by Stewart or the archaeologists of the possibility of cohabitation of Africans and Tainos. The St. Thomas individuals (an adult male and female) were buried in association with red ochre mounds, stone artifacts, and with a pot over the face of one of the individuals. They were amongst 19 Taino burials. The site had been disturbed by previous archaeological excavation and was difficult to assess, yet there might have been historical reasons for 2 Africans to have been among a group of Tainos. It is not at all clear from these publications why the site was assumed to be pre-Columbian (the authors actually refer to pre-1700) simply because there were Taino artifacts. Tainos were present in the Caribbean in early colonial and genocidal times. The remains were curated at the University Museum at Oxford, but the temporal relationships might never

⁷ Paleopathology had first focused on individual specimens, not populational structure and dimensions of health. Traumatic lesions and syphilis, trephination (evidence of pre-scientific brain surgery), dental "mutilation" (aesthetic modification of the shape of anterior teeth), and deliberate cranial "deformation" (aesthetic modification of skull shape) provided exotic and sensational single specimens on which to report (Armelagos et al. 1971). Yet, many of the individual cases reported were probably essential to the development of type specimens for diagnosis that would be needed for later paleoepidemiological work. Reports of individual cases, racial taxonomic studies, and descriptive research with vague ties to evolutionary theory (and which were uninformed by social history) continued throughout the 1970s (Armelagos et al. 1982). By that time, a modern statistical paleopathology and bioarchaeology had also become well established. Not until the 1980s, 40 years after its application to Native American and other cultural groups, would the paleodemographic or statistical approach come to be used for the study of people of African descent in the Americas. African American physical anthropologists would also participate in that work for the first time during the 1980s, bringing their intellectual traditions with them.

be resolved. There would not be another such study until 30 years later and under similarly accidental circumstances.

A notable comparison is found in the work by Ortiz (1927, 1929), followed by Rivero de la Calle (1973), on several cases of dental modification ("mutilación") in Cuban skeletal remains. Although the general assessment of the skeleton was limited, the historical, ethnographic, and folkloric context was extensively revealed in the analysis of the significance of this practice. Dental modification was associated with maroons (cimarrones) and religious enclaves. These are also the only examples of dental modification that have been evaluated as a possible local practice, rather than having occurred among Africans brought to the Americas subsequent to the modification of their teeth.

In 1974, two skeletons were found at site 2-AVI-1 -ENS-1 at Hull Bay, St. Thomas, which Smithsonian Institution physical and forensic anthropologists also assessed to be "Negroid" (Ubelaker and Angel 1976). Skeleton A (a 33–41-year-old man, 5 foot 7 inches in stature) had only slight periostitis (indicating infection) on the tibia (lower leg) but showed extensive dental decay and abscesses. Skeleton B (a 30-38year-old man, 5 foot 8 inches in stature and with a morphology remarkably similar to Skeleton A) was shown to have extensive spindle-shaped periostotic tumorlike lesions of the right femur (upper leg) and left middle arm, accompanied by active cloacae associated with blood-borne infection. He had a partially healed fracture of the left humerus (upper arm) near the lesion and a healed fracture of the left clavicle (collar bone), both of which caused significant shortening of these elements. Skeleton B also had very extensive tooth loss and abscesses. Skeleton B was associated with coffin nails and therefore reasonably of the colonial period. But, Skeleton A was definitely associated with an indigenous pottery fragment (Elenoid period, dated A.D. 800-1200) and no colonial artifacts. Radiocarbon dating only resolved that the skeletons were not recent, important for the forensic concerns of the investigation. In this example of another accidental bioarchaeological encounter with an African skeleton, the methods to assess race, age, sex, and stature continued to be important for forensic identification, yet the assessment of pathology marked a more modern approach than the earlier St. Thomas study. None of these examinations attempts to explore the population, history, or social condition of Afro-Caribbean people.

Another Smithsonian publication by Angel in 1976 examined "Colonial to Modern Skeletal Change in the U.S.A." The study compared 82 skeletons from archaeological collections (1675–1879) with 182 modern forensic or donated skeletons. Angel (1976:727) anticipated increased body size in both the Euroamerican and African American populations due to increased genetic heterosis and "improvements in disease control, diet, and living conditions." This was a traditional study in its reliance upon physical anthropological and anatomical literature, early military data on stature, and evolutionary interpretations. The study showed remarkably little skeletal change, albeit greater in the black population than in whites. Life expectancy increased, as did a pelvic indicator of nutritional adequacy, but poorer dental health and the increased frequency of traumatic fractures were seen to reflect modern stresses.

Angel's study was flawed by the nature of skeletal collections. The continuing dearth of middle- and high-status Euroamerican skeletal collections meant that comparisons of the physical differences relating to socioeconomic variation and change among Euroamericans could not be adequately made.8 Class analyses, especially for the Euroamerican population of the past, also cannot be made on the basis of existing skeletal collections because these have practically no class variation. Comparisons with historical-period African American or Native American populations with Euroamericans also cannot be accurately made unless these are strictly meant to show relationships among the Euroamericans who were desperately economically poor and/or institutionalized. The fact that physical anthropologists had focused upon the analytical category of "race" meant that the socioeconomic character of these populations was seldom viewed as important because a Caucasoid was a Caucasoid, whatever his or her class. The political economy of collections acquisition is also evident, given that the

⁸ Angel did what was probably the only means of addressing the problem of the very low economic status of individuals comprising modern skeletal collections by using donated skeletons and crime victims that included the non-impoverished. Angel's sampling probably came closer to a proper comparison than usual. El-Najjar et al. (1978), for example, studied secular change in dental enamel hypoplasia frequencies (evidence of childhood malnutrition and disease) in U.S. blacks and whites without addressing these biases. The fact that both the perpetrators and victims of violent crime tend to be among the desperate poor, however, means that some class bias likely remained in Angel's study. The extent of class continuity among these temporally differentiated groups should be considered when the modesty of change observed by Angel is considered.

poor and the "other" could readily be dug up or dissected, preserving the burial rights of financially stable whites. An increased interest in the biological effects of socioeconomic environment during the 1970s is certainly apparent in the Angel paper, despite his continuing reliance upon the use of evolutionary principles. With Angel, the Smithsonian Institution had taken a significant step forward from an earlier preoccupation with the racial evolution of "Old American" whites during U.S. history (Hrdlička 1925).

In 1977, the skeletons of two enslaved African American men (Burial No. 3 was 30-40 years of age and Burial No. 5 was 40-45 years of age) were reported from a 3,000-year-old burial mound on St. Catherine's Island of the Sea Islands off the Georgia coast (ca. 1800). These skeletons, too, were found accidentally during a long-term study of the island's native archaeology by the American Museum of Natural History. The analysis (Thomas et al. 1977) was, however, less forensic and more pertinent to historical interpretation than were the Smithsonian studies. Racial identification was made, as in the other studies, along with a modern paleopathological assessment. One man (Burial No. 3) had fractured a leg shortly before death; it had become infected and probably led to his death. The other "was probably shot to death by a military-type weapon" (Thomas et al. 1977:417). Both men had evidence of arduous labor by virtue of their robusticity and muscle development and had "abysmal" dental health. David Hurst Thomas and his associates also encountered the fancy burial of the slaveholder's son in a separate location, showing him to be physically young, gracile, and lacking in evidence of hard work. However, evidence of childhood illness and poor dental health in this individual was similar to the African American skeletons. These comparisons were used to examine the relative quality of life and condition of the two plantation groups, bringing to bear both written and oral historical sources. The researchers could not determine why the burials had been made in a Native American burial mound, and they left open the question of relations with native people after considering the generalization of an historian:

If the [African American] emphasis on burial with one's family spirits was as strong in the early nineteenth century as Combes suggests it was later, the fact that burials were placed in Cunningham Mound D—isolated as they seem

to be—becomes a relevant factor for interpretation [Thomas et al. 1977:418].

With such a small number of burials (n = 3), there was no statistical analysis, and there was only a rudimentary historical and cultural analysis. But this study did engage historical analysis and was therefore more advanced than previous reports on accidentally encountered African American sites by suggesting new motivations in addition to its use of the new paleopathology. These authors were examining people, not a race, and probing the conditions of slavery. They reinterred the remains, rather than curating them, and made recommendations about historical-period burial sites that were considerate of both public sensibilities and scientific concerns for improved rigor and cultural interpretation:

We do not of course, advocate wholesale archaeological investigation of historic graveyards. Prevalent social and religious customs are to be respected in matters of this sort. But we do urge that as graveyards are required to be moved to make way for progress, archaeological mitigation should include adequate research designs to raise some of the germane questions regarding past human behavior and belief systems [Thomas et al. 1977:418].

These are the only African Diaspora bioarchaeological studies prior to 1980. After this time, sample sizes and geographical ranges would increase, historical and cultural interpretations would become more sophisticated, and "customs . . . respected in matters of this sort" will overwhelm bioarchaeology. What would be responsible for these dramatic changes?

The emergence of an active research interest in African American sites developed as a result of the NHPA of 1966. This act required the funding of archaeological work to mitigate the effects of all federal construction projects, including buildings and highways, in order to preserve cultural heritage. These cultural resources management (CRM) projects caused the growth of private archaeological consulting firms, which quickly became the main source of archaeological employment in the United States. CRM also meant that contract funding was available for site excavation and descriptive reporting for sites that were encountered accidentally. Federal road and building projects across the United States produced a number of sites, some of which resulted from encounters with African American cemeteries. Although it can be acknowledged that mitigation is a form of cultural resources preservation, that ideally sites are protected, and that projects halted or impacts mitigated, it also is the case that, potentially here was a target of opportunism for archeologists seeking contract work in an area they had not studied before, but also of opportunity for the launching of African American archaeology.

The first work at an African American site was not on a cemetery, but rather on a plantation sitethe Kingsley Plantation in Florida, excavated by Charles Fairbanks in 1967. Departing from the new archaeology's emphasis upon ecological determinants, Fairbanks took a historical approach. According to Ferguson (1992:xxxviii), "Fairbanks was not bowing to professional pressure or pleas for a new and more objective archaeology; he was addressing black demands for more attentiveness to black history, and without that political pressure African American archaeology would have developed much more slowly, if at all." I agree with Ferguson that this new specialty resulted from a combination of the structure of the law, together with the pressure of black political and social protest. African American archaeology received increased funding because such sites were repeatedly found in the way of U.S. government roads, buildings, levies, parks, and other construction projects.

Black protest had created both an interest in, and market for, black history, but archaeologists and bioarchaeologists showed little or no interest during the final decade of the twentieth century. Archaeologists did not take courses in African American Studies departments that were multiplying during the period between the 1970s and 1990s, a time when an archaeological shift took place. These departments remained marginal to the university education of whites. Nor did most archaeologists excavating black sites collaborate with African Americanists, most of whom were black, who had the most extensive knowledge of African Diaspora history and culture. Furthermore, archaeologists did not participate in the Association for the Study of African American Life and History or any other scholarly associations African Americans had long ago established for purposes similar to those that archaeology was just beginning to serve.

This lack of regard for the intellectual fundamentals of African American Studies reflects the continued segmented social relations (legal and de facto segregation) between U.S. whites and blacks, who make up the archaeologists and African Americanists, respectively. For two more decades, this situation would continue to produce important limiting effects on

African American archaeology and African American Studies. Notably, plantation archaeologist Theresa Singleton (Smithsonian Institution and Syracuse University) and African American Studies specialist Ronald Bailey (Northeastern University) organized a weeklong meeting at the University of Mississippi in 1989 with the goal of bringing practitioners of both fields together in dialogue. It is not sociologically surprising that as the only black Ph.D. archaeologist working on plantation sites, Singleton would be the one to notice that something was wrong and to try to bring African American Studies and archaeology together to talk.⁹

In the most extensive review of "The Archaeology of the African Diaspora in the Americas," Singleton and Bograd (1995) found that African American archaeology had expanded since the 1960s to include greater regional and industrial diversity of southern sites and to address issues of race and ethnicity, acculturation, inequities, and resistance. Moreover, their exhaustive survey also revealed that most of the literature had been largely descriptive, relied too heavily upon flawed analytical techniques or very narrow perceptions of ethnicity, and had been slow to incorporate African American perspectives in developing this research (Singleton and Bograd 1995:30). Continuing, these authors observed

that race predominates in discussions of plantation life or defines the presentation of blacks' lives following emancipation may in part reflect white archaeologists' and white America's preoccupation with race. There is a tendency to presume that race, or ethnicity, is significant, which is not to say that race is not important. Rather it is to assert that white preoccupations are not always the same as black preoccupations [Singleton and Bograd 1995:31].

The authors argued that it is best to consider ethnicity as a process that is both forced upon and

⁹ It should be noted that Merrick Posnansky (UCLA)—who would introduce Theresa Singleton at the first session ever on historical archaeology at the tenth Congress of the Pan-African Association for Prehistory and Related Studies in Harare in 1995 as the "mother of African American archaeology"—had been an important mentor to many of the new Africanists and diasporic archaeologists who emerged from UCLA in the 1980s. Professors DeCorse and Agorsa represent Professor Posnasky's influence within the New York African Burial Ground Project. Perry, Howson, and Bianchi of our project, furthermore, had studied or worked with Schuyler and others at the forefront of African American historical archaeology in the Northeast United States.

creatively used by African Americans, rather than creating an archaeology of "the other," consisting of static typologies that identify a group with objects. In most cases, the absence of type objects comes to constitute evidence of acculturation and assimilation when other plausible interpretations exist. I suspect that this typological approach is tethered to both the American myth of the Negro past and Herskovits's search for Africanisms. According to Singleton and Bograd (1995:23–24), "The tenor of many ethnicity studies is problematic. One problem is that they tend to take a perspective from the outside, how archaeologists and others define ethnics or cultural groups, rather than how ethnics define themselves." Similar issues have been raised in a critique of African archaeology (Andah 1995).

Historical archaeologists' publications rarely reflect African Diaspora scholarship, which has been the most prolific literature on this subject for more than a century. What is most often evident in their work, however, is the influence of the new historiography of plantation life that had also been fostered by the social changes of the 1960s. After 1980, physical anthropologists would also draw from this important literature, central to the maturation of African American bioarchaeology. Although space will not allow extensive discussion of the emergence of African American research in mainstream historiography, a few examples seem essential to understanding its emergence and influence upon bioarchaeology.

The same sociological phenomena that spurred African American archaeology fostered historical research on the subject, but the marketing and funding venues for history were different from those of contract archaeology. The Black Consciousness movement had succeeded in producing a market for history books and lectures, and the civil rights movement had stimulated interest in both blacks and American racism. The historical works of Woodward (1968), Jordan (1968), and Genovese (1976), which followed the early work of the left-leaning Aptheker (1943), are examples of an emerging Euroamerican interest in African American historiography that explained the origins of American racism and the condition of blacks. Herbert Gutman's (1976) historical and demographic study, The Black Family in Slavery and Freedom, opposed Senator Daniel Moynihan's (1965) influential report, The Negro Family in America: The Case for National Action.

Moynihan had attributed urban black poverty to a typically "dysfunctional" slave family, which Gutman showed to have little historical basis. But it was Fogel's and Engerman's (1974) economics treatise, Time on the Cross, that stirred a major debate about whether or not working-class whites were similarly oppressed as enslaved blacks, whom the authors claimed were more than adequately nourished. Like Moynihan, Time on the Cross raised the specter of apology when blacks were found to have been worse off in many respects after Reconstruction than during slavery. The critiques of this work by Gutman (1975) and David et al. (1976) were quite devastating. This new historiography drew heavily upon the prior work of black scholars. Add to these Phillip Curtin's (1969) Atlantic Slave Trade: A Census, which estimated the death toll of the Middle Passage in the millions—millions more perhaps than most whites wanted to acknowledge and millions fewer than estimated by some black scholars—and became a major historical grist for the mill of scholarly and politicized debate.

Physical anthropologists began to use data about the demography, nutrition, and health of enslaved African Americans to address questions regarding the quality of life among the enslaved. Curtin's article on the slave trade and Steckel's (1977, 1986) work on problems of nutrition, disease, and mortality on plantations followed Stampp's (1956) The Peculiar *Institution* in showing the dire demographic and health consequences of American slavery. Higman's (1979) extensive Trinidadian data on the demography of the slave trade represents an early example of how this type of research uniquely found its way to the American Journal of Physical Anthropology. Kiple and Kiple's (1977) and Savitt's (1978) apologetic theories attributing chattel slavery and racism to black genetic immunities to disease also resonated with the evolutionary bent of physical anthropology. The biological data generated by these biohistorical debates interested physical anthropologists who were poised to enter the discussion with the bones and teeth of the enslaved people themselves. Nonetheless, Rankin-Hill (1997:12) seems correct in saying that "little has been accomplished in expanding the conceptual limits of [biohistory]. In fact, much of the emphasis has been on the intricacies of quantification and data manipulation, and not on different approaches to interpreting and/or examining the data generated."

The stage for the nascent bioarchaeology of the 1980s was set. Political events spurred a broader societal interest in blacks. Government funding options and markets opened for research and publications in African American archaeology, in particular, and historical archaeology, in general. Accompanying these trends, a biohistorical literature came to prominence that spoke to the biological anthropologists who had seized upon epidemiological and demographic approaches.

As interest in racial studies waned—apart from forensic anthropology—physical anthropologists were looking for new ways to apply their methods to societal issues (Armelagos and Goodman 1998; Blakey 1987). Biocultural approaches that sought to use biological stress indicators as evidence of societal variation and change began to emerge during the 1970s (Goodman and Leatherman 1998). Biohistorical approaches, if applied to bioarchaeological contexts, were ideal for biocultural studies. The students of George Armelagos and others at the University of Massachusetts, in the forefront of biocultural anthropology, had particular impact on the evolving shape of African American bioarchaeology. Finally, the hurricane-like sweep of successful efforts by Native Americans in the 1980s to control the disposition of their skeletal remains and sacred objects (Thomas 2000) culminated in the passage of federal preservation legislation (Native American Graves Protection and Repatriation Act [NAGPRA] 1990). By 1985, the Native American Rights Fund and the U.S. Congress focused their objections upon the Smithsonian Institution. The writing was on the wall. American physical anthropologists were losing access to their main source of professional reproduction—Native American bioarchaeological research. The field of African American bioarchaeology loomed, therefore, to some as an open niche.

The Birth of African American Bioarchaeology

The first extensive African American bioarchaeological study was conducted by Jerome Rose and his colleagues at the University of Arkansas in 1982. The Cedar Grove cemetery site (3LA97) in Lafayette, Arkansas, was in the path of the U.S. Army Corps of Engineers construction of a revetment on the Red

River. This African American cemetery had been used during the post-Reconstruction period, 1890–1927, when freed blacks in Arkansas were engaged mainly in tenant farming. Yet, it was the prehistoric site that lay beneath Cedar Grove that had initially been found significant and for which "mitigation" of the adverse impact of revetment construction was necessary, according to the ACHP that oversees the NHPA of 1966. Although the ACHP would later accept the African American cemetery for listing in the National Register of Historic Places as significant and deserving mitigation, little time and few resources were available for the study of the effects of the revetment construction on the site. The Cedar Grove Baptist Church gave the anthropologists permission to conduct research during a 24-hour period prior to relocation and reburial. The University of Arkansas team excavated and analyzed the 79 remains extremely rapidly, salvaging an extraordinarily sophisticated set of paleopathological data, given the limited amount of available time. In the analysis, Rose (1985) also used the biohistorical literature and thus entered into the ongoing debates.

The Cedar Grove burial sample was shown to have been highly stressed by all indications. Neonatal mortality (always underestimated using skeletons because of the deterioration and loss of small bones) was 20 percent, and 55 percent of all individuals died before reaching 15 years of age. Only a single individual died between the ages of 15–19.9 years of age; most of the remaining members of the sample died between the ages of 30 and 50. Ninety percent of the individuals had evidence of infectious disease and nutritional problems, which is very high. Among infants and children, there were high frequencies of anemia, rickets, scurvy, and protein malnutrition. For adults, the evidence was mostly of healed or chronic infection, degenerative arthritis, healed fractures in men, and one male and one female with bullet wounds. Evidence of poor nutrition, high disease loads, and arduous work regimens was further supported by the bone histological study of Martin et al. (1987). Rose (1985:v) surmised that the work regime for these freed men and women "had not changed since slavery" and that the "general quality of life for southwest Arkansas Blacks had deteriorated significantly since emancipation due to the fall in cotton prices and legalized discrimination."

In 1985, there had been sufficient African American research by physical anthropologists for Rose

and Ted Rathbun (University of South Carolina)¹⁰ to organize the first symposium on "Afro-American Biohistory" at the Annual Meeting of the American Association of Physical Anthropologists. Reference at these meetings to blacks in ethnic and historical rather than racial—terms, was novel in and of itself. The symposium was published as a special issue of the journal in 1987 (volume 74), with one paper appearing later (Blakey 1988). Rose coauthored the histological study of Cedar Grove with Debora Martin and Ann Magennis. Also, there were bioarchaeological studies of the remains from a South Carolina plantation near Charleston showing evidence of childhood malnutrition and disease in a sample of 28 individuals who died ca. 1840–1870 (Rathbun 1987). Dental and skeletal growth disruption was found to be highest for male children, 80 percent of whom had evidence of anemia and infection. Most men and women (69 percent and 60 percent, respectively) had bone reactions to infection; they also had relatively high lead and strontium concentrations, indicating a diet high in plant foods. No clear evidence of syphilis was found (Rathbun 1987). This study contained a useful review of the biohistorical and archaeological literature, again showing the close connection to debates in history and archaeology at that time. This site was removed because of private development, and the law did not require mitigation. The research team was able to convince the landowner to allow research prior to reburial.

The demography and pathology of 13 individuals from the eighteenth- and early-nineteenth-century St. Peter Street Cemetery in New Orleans gave evidence of arduous labor among younger males and comparatively less such evidence among the many females and older adults; these individuals were interpreted as house servants (Owsley et al. 1987). The further racial analysis of this study, which attributed lower life spans to racial admixture, along with the dearth of social and historical analysis, shows continuity with older racial traditions. This paper also described a deeply

infected distal right tibia, which Blakey and Ortner had diagnosed as osteomyelitis, the result of chronic infection of an ankle shackle (see plate in Owsley et al. [1987: 191] for this extraordinary example).

Another study (Owsley et al. 1990) compared the 149 black and white skeletons from Cypress Grove Cemetery (1849–1929) of Charity Hospital of New Orleans with burials at other sites. Excavation at this site also had been mitigated in the course of a federal highway project. Similarities were found with the St. Peter sample, and the infection rates paralleled those of a New York State pauper's cemetery used by whites. The analysis of cut bones indicated that both blacks and whites who died at Charity were often dissected prior to burial. Consistent with the forensic approach frequently used in CRM bioarchaeology, the descriptive data were not integrated with community history. The accompanying volume prepared by archaeologists provided historical description (Beavers et al. 1993) dealing mainly with the city health and medical context of the hospital.

Several biohistorical studies appeared during the final decades of the twentieth century that also show clear anthropological influences. Hutchinson (1987), using Harris County, Texas, slave schedules of 1850 and 1860, in combination with a credible range of biohistorical literature, explained marked regional population growth as a function of importation rather than natural increase. She showed that enslaved persons who were recorded as "black" tended to have higher life expectancies on small farms and those termed "mulattoes" were on average older on large plantations; this possibly was because there was more mulato house servitude on large plantations where black field hands were exposed to the worst conditions. Alternatively, mulatoes might have more often been native to the Harris County plantations and therefore younger, on average, than the blacks who most likely included imported Africans. Immunities to yellow fever (following Kiple and King 1981) also might have contributed to differences in life expectancy between the blacks and mulatoes (Hutchinson 1987). Wienker (1987) combined traditional evolutionary and biodeterministic tendencies with a new bioculturalism in his study of an early-twentiethcentury logging-company town in Arizona. Although he acknowledged health care inadequacies for blacks in the town's deeply segregated context, Wienker considered the possibility that dark pigmentation might have had deleterious effects in the temperate Arizona highlands.

¹⁰ Although Rathbun at South Carolina also studied with Bass, his work stands out as exceptionally informed by an appreciation for the biohistorical debates. Rathbun and Scurry (1991) also compare the evidence of infection, malnutrition, mortality, and lead content in skeletons of enslaved Africans and slaveholders from the Belleview Plantation (1738–1756) near Charleston, South Carolina. These authors indicate that the Africans clearly had harder work and lower status than the English plantation owners. The health of the two samples was similarly very poor, although the owners had twice the exposure to lead as did workers owing to food-preparation and -storage differences.

A clearer break toward a non-biodeterministic view—as seen in Rose (1985), Martin et al. (1987), and Rathbun (1987)—is also found in the symposium paper by Blakey (1988). This paper traced ethnogenesis and demographic change in an Afro-Native American ethnic group (Nanticoke-Moors) in rural Delaware, from the colonial period until 1950. The study used a political economic analysis of 406 cemetery headstones, archival data, and oral history. It proposed that community responses to racial policies and industrialization brought about a single community's segmentation into different socially constructed races. Although genetically similar, Nanticoke-Moors experienced different educational and economic options depending on their "racial" affiliations. Increased isolation was required to maintain Indian identity, with increasingly higher life expectancy among the industrializing African American identified kin, than among Indian identified kin, who maintained a farming economy. Notably, this study considered few biohistorical debates, with the exception of Eblen (1979), and focused instead upon historical and ethnographic literature that examined African American-Native American relations in the region.

During the mid-1980s, a collaboration was initiated between the Smithsonian Institution and JMA (a CRM firm), that led to excavation of the First African Baptist Church (FABC) cemetery in downtown Philadelphia and, as a consequence, also contributed to the Afro-American Biohistory symposium. The FABC had been used primarily by free, freed, and escaped African Americans between 1821 and 1843. Because it was in the path of subway expansion, the site required archaeological mitigation. JMA excavated 144 burials, by far the largest African American archaeological sample to that date. The FABC was also unique as a northern black bioarchaeological site and a rare urban example; St. Peter in New Orleans is the other urban exception. The fact that the analysis was led by J. Lawrence Angel, a preeminent physical anthropologist at the Smithsonian Institution, raised the status of African American bioarchaeology as surely as had the Rose-Rathbun symposium. Angel, who had first established his reputation on the social biology of ancient Greece, had turned to the study of secular change in the European and African American skeletons from the colonial period to the present (Angel 1976). Along with his assistant, Jennifer Kelley, the principal archaeologist, Michael Parrington, and the collaboration of Lesley Rankin-Hill and Michael Blakey (who coordinated and completed the project at the Smithsonian following Angel's death), J. Lawrence Angel personally conducted the core research and also made the collection available to other researchers. This combination of researchers, we believe, may have helped the FABC cemetery work evolve even further beyond the descriptive approaches that Angel typically had employed.

Of the 75 adult skeletons, males had a higher average age of death (44.8 years) relative to females (38.9 years), which compares favorably with most other nineteenth-century African American sites. The individuals in this burial sample appeared to have been stressed by inadequate nutrition, arduous labor, pregnancy and childbearing, unsanitary conditions, limited exposure to the sun, and extensive exposure to infectious diseases. Nutritional and growth indicators showed little better conditions than those for enslaved blacks at the Catoctin Furnace ironworks of Maryland, 1790–1820 (Kelley and Angel 1983), although arthritis and violence-related fractures were fewer in Philadelphia (Angel et al. 1987). Consistent with the tradition of physical anthropology, the studies of ancestry were also of interest, with the resultant observation that 30 percent of individuals with os acromiale (non-union of part of the shoulder joint) being interpreted as a familial trait, when it might have been evaluated as the result of persistent mechanical, labor-induced stress during adolescent development (Rankin-Hill 1997:152; Stirland 2000:118–130).

The comparative analysis of Angel and Kelly was further developed in a second symposium paper (Kelley and Angel 1987) for which they had assembled 120 colonial African and African American skeletons from 25 sites in Maryland (Catoctin), Virginia, and the Carolinas, as well as forensic cases in the Smithsonian's collections. Nutritional stresses were very evident in many skeletons, including anemia, which these authors incorrectly attributed to sicklemia. Adolescents and many adults (both male and female) showed exaggerated development of skeletal features associated with lifting muscles, including the deltoid and pectoral crests of the humeri. The researchers also noted degeneration of the vertebral column and the bones of the shoulder at relatively young ages. Evidence of skull trauma and "parry" fractures of the lower arm suggested that violence had been especially common at Catoctin Furnace. In these examples, historical references were rarely used.

The FABC skeletons were reburied in Eden Cemetery, Philadelphia, by the modern congregation in 1987. At a time when Native Americans were calling

for reburial of 18,000 remains at the Smithsonian, the institution's initial interest in announcing the FABC ceremony was administratively quashed. And, little more than marginal interest was expressed by the church congregation. The attitudes of African Americans regarding this research, little of which had been made available to them, were mixed. In contrast, 5 years later, the New York community would explode over a similar project.

JMA continued to develop the preliminary work of Parrington and the foundation study of Angel (Parrington and Roberts 1984, 1990). Blakey and his associates at Howard University's Cobb Laboratory published articles on childhood malnutrition and disease using a detailed analysis of dental developmental disruption, enamel hypoplasia (Blakey et al. 1992, 1994; Blakey et al. 1997). Dental defect frequencies in the FABC cemetery sample were at frequencies similar to those found in the Maryland and Virginia collections that Angel had described, pointing to a similar degree of childhood malnutrition and disease in the recently free North as in the plantation South (Blakey et al. 1994). Both reported hypoplasia frequencies between 70 and 100 percent, which were among the highest in any human population studied by anthropologists. 11 This demonstrated the capability of paleopathology to render this type of comparison across a broad span of human experience. In Philadelphia, these stresses occurred during fetal development as well as throughout the first 7 years of life. The advantage of historical records for some FABC individuals included documented causes of death. These causes prominently included infectious diseases, and 10 percent of Philadelphia's children had reportedly died of marasmus (starvation) (Blakey et al. 1994).

Lesley Rankin-Hill (1997) published the first book that synthesized a breadth of African American bioarchaeological and biohistorical data for the interpretation of the FABC, *A Biohistory of 19th-Century Afro-Americans: The Burial Remains of a Philadelphia Cemetery*. Based upon her 1990 Ph.D. dissertation, this extensive treatment of modern paleopathological and demographic methods and the use of general

and site-specific historical sources is commendable. Particularly important was her use of a basic model of biocultural stress developed at the University of Massachusetts by Goodman et al. (1984). This general model, which places culture in the role both of stress adaptation and stress inducer, was elaborated by Rankin-Hill (1997:164–165) as an organizing scheme for the particular historical stressors and effects of nineteenth-century urban African American life. She did, in fact, present the most developed theoretical formulation for African American bioarchaeology, which included the political and economic factors interacting with the physiology and health of early African Americans. She described the multiple stressors, cultural buffers, and skeletal effects of physiological stress in the lives of Philadelphia laborers and domestic workers; we will compare these to the earlier skeletal record of New York City. The emphasis on adaptation anchors this work to the evolutionary tradition of the field.

Although there are other influential centers, the influence of the University of Massachusetts is tangible, having been the graduate institution of Rose, Martin, Magennis, Rankin-Hill, and Blakey, as well as Robert Paynter in African American archaeology. It can be distinguished from the other centers of the development of this specialty by its unabashed advocacy and development of biocultural theory (Goodman and Leatherman 1998; Rankin-Hill 1997). Early biocultural models were developed from the synthesis of the human adaptability interests of R. Brooke Thomas, the biocultural paleopathology of George Armelagos, and the historical demography of Alan Swedlund during the late 1970s and early 1980s at Massachusetts. These models were honed and evolved by their students in order to incorporate political and economic factors that would expose the biological effects of oppression. The influence of faculty in cultural anthropology, economics and African American studies influenced the physical anthropologists and archaeologists, all of whom were exchanging information at a time when walls were being erected between subdisciplines at many other anthropology departments.

The involvement of African Americans was also unusual, including one faculty member—the influential Johnnetta Cole—and one-third of all the black physical anthropology students in the United States (Lesley M. Rankin-Hill and Michael L. Blakey) during this crucial period. More importantly, they were

¹¹ Rathbun's results on a South Carolina plantation were very similar, as was the mutual finding of significantly higher hypoplasia frequencies in male than female children (Guatelli-Steinberg and Lukacs 1999). The Howard study also first showed that the dietary stresses of weaning were not the primary cause of hypoplasia (see review of Katzenberg et. al. [1996]) in African Americans, raising questions about this assumption of Rathbun (1987) and Corruccini and coworkers (1985).

steeped in African American traditions of scholarship, which they inserted into the departmental discourse. The progressive intellectual developments of the 1960s and early 1970s were well recognized at Massachusetts, as was the abysmal record of physical anthropology regarding race. Research on the political history of physical anthropology was exceptionally active there, and the emphasis was on the development of new theory. The core of the New York African Burial Ground Project skeletal biologists come from this background. They also have been influenced by African Diaspora scholars, prominently including Montague Cobb of Howard University.

In contrast, during that period, many of the forensics-oriented academic and museum programs that also conducted bioarchaeological investigations, still were hampered by approaches reflective of the racial-descriptive tradition. In places like the Physical Anthropology Division of the Smithsonian Institution, or forensics-oriented physical anthropology at the University of Tennessee, a technical emphasis on human identification appeared to grow in isolation from social, cultural, and political theory and African American studies. Despite their then embrace of conservative traditions, these and other institutions and their graduates have been much involved in the shaping of bioarchaeology of the African Diaspora, and during the 1960s and early 1970s, they were perhaps the most influential institutions for forensic anthropology.

The racial-descriptive approach, rather than a biocultural one, dominated MFAT's initial field analyses of skeletons at the New York African Burial Ground site. Their apparent efforts to define the population racially, with little regard for its cultural and historical interpretation, appeared in awkward contrast to the critical, humanistic, and diasporic sensibilities of the descendant community; it was also in contrast to the biohistorical research orientation of the new project leadership that took charge of the laboratory and analytical phases of research described in this final report and its two companion reports.

The distinctions between these approaches are recognized by many practicing paleopathologists. Scholars from any of the specializations and institutions described above are, of course, diverse and individual in the ways that they have developed expertise and should not be stereotyped by the examples or general trends explicated earlier herein. The goal of this chapter is to clarify the difference that each historical,

intellectual trajectory makes for the study of African American bioarchaeology. The clashes between these approaches in the 1990s, highlighted by the African Burial Ground phenomenon in New York City, are understandable from this vantage (see Epperson 1999; La Roche and Blakey 1997). The New York African Burial Ground Project chose its epistemological path among these available avenues.

Some very interesting diasporic bioarchaeology was also conducted by researchers outside the United States by the end of the 1980s. The most sophisticated is the work of Mohamad Khudabux (1989 and 1991), sponsored by the Universities of Surinam, Kuwait, and Leiden. His studies have referred extensively to much of the recent United States skeletal literature and to Higman's (1979) archival data on statures of different African ethnic groups enslaved in the Caribbean. A study of the 38 African skeletal remains (57 burials) of the Waterloo Plantation (1793–1861) in coastal Surinam is striking for its combination of modern paleopathological methods (from the Workshop of European Anthropologists), its use of historical documents, and political economic analysis (akin to the most advanced stage of North American biocultural theory as represented in Goodman and Leatherman (1998). The overarching question of the study is whether the skeletal data would confirm the eighteenth- and nineteenth-century chronicles pointing to poorer health and quality of life among the enslaved Africans of the Caribbean than among those of the United States. The data generally did confirm, but the detailed analysis is all the more interesting.

Mortality on this cotton plantation was highest among 0–5 and 35–60-year-olds, producing a life expectancy at birth of approximately 40 years. This life expectancy, higher than at sugar plantations, was attributed to the less extreme arduousness of cotton work. The study made skeletal statural comparisons to those from Caribbean and North American sites and considered the influences of both genetics and diet. Unusually and especially significant, it included descriptions of variation in African cultural origins during the course of the trade, including Ewe, Fon, Yoruba, and Akan (Gulf of Guinea), thus giving a cultural texture to bioarchaeology that racial assessment otherwise obscures.

This study's evidence demonstrated the skeletal effects of heavy work, poor housing, and poor nutrition as did the contemporary research on North America. A distinct pattern for Surinam, which the authors effectively generalized to much of the Caribbean during the active slave-trade period, was the small proportion of women on Surinam plantations. There were approximately twice the number of skeletons of enslaved men as there were of women at Waterloo, and historical documents report a less extreme but consistently low sex ratio for Surinam as a whole. They also presented convincing evidence for syphilis in 27 percent of the population (with vault stellate lesions); 8 of these individuals were diagnosed with the acquired venereal form. "Saber shin" (swordshaped tibiae associated with syphilis and yaws) was present in 6 individuals between 5 and 15 years of age who were thought to have contracted late congenital syphilis. Combining the 6 individuals with saber shin and the 8 individuals diagnosed with acquired venereal syphilis, a total of 14, or 56 percent of the population, displayed evidence of treponemal infection. Skeletal manifestations at this level point to a heavily treponema-infected group, most of which appeared to be syphilis. Treponemal diseases in the New York African Burial Ground sample occurred at dramatically lower rates than were found in the Surinam sample and included no examples of stellate lesions.

What stands above most U.S. observations of this colonial disease in blacks is the incorporation of a dynamic historical context by the Surinamese researchers. Documentation shows that veneral syphilis was introduced to Africans by the frequent rape and abuse of women on slaving ships, and the widespread concubinage of female house servants, which spread contagion. Because the sex ratio was so low, as was the woman's control of her own body, the clear inference would be that European and African males would have been sexually active with the same women. A relatively large proportion of males was instrumental to the cotton industry, as with the even more labor intensive sugar industry. Under conditions of slavery, the Caribbean sex ratio contributed to the spread of treponemal disease. Fertility in the Caribbean was noted as being flat or below replacement, similar to what Volume 3 of this series, Historical Perspectives of the African Burial Ground: New York Blacks and the Diaspora, documents for eighteenth-century New York. During the period of intensively active transatlantic trade, Africans could simply be replaced when made to work beyond the physiological requirements of fecundity.

Khudabux and his associates showed that when the transatlantic trade was outlawed and Surinam needed to foster fertility among the Africans enslaved there, the ravages of syphilis had become so great that it would be a long time before its population could grow, which ironically hindered Surinam's economic development.¹²

U.S. anthropologists also were examining Caribbean bioarchaeological data during the late 1980s and 1990s. The historical archaeological report of Handler and Lange (1978) spurred many subsequent skeletal studies of Newton Plantation in Barbados. Because the archaeological excavation of the skeletons had been less than systematic, skulls predominated the collection and hence dental studies were emphasized. These studies revealed high frequencies of enamel hypoplasia, indicating high nutritional and disease stresses in early childhood (Corruccini et al. 1985). Three individuals with Moon's molars and Hutchinson's incisors were reported, which was extrapolated to a 10 percent syphilis rate for the living plantation population (Jacobi et al. 1992). Studies of trace elements isolated very high lead contents, which, if not the result of contamination, suggested a high intake of rum distilled in leaded pipes (Corruccini, Aufderheide, et al. 1987). They also reported dental modification ("tooth mutilation"), high frequencies of tooth root hypercementosis associated with chronic malnutrition and periodic, seasonal rehabilitation (Corruccini, Jacobi, et al. 1987) and high childhood mortality. One of the important generalizable findings of the study involved infant mortality, which these authors found to be about 50 percent of mortality reported in archival records. Less than half this percentage—16 infant deaths in a total population of about 104 skeletons—was observed from infant skeletons, which were disproportionately destroyed by taphonomic processes

¹² The incisiveness of a political economic approach to bioarchaeology was developing well outside of the United States. It may also be worthy to note that although African Diaspora studies were not undertaken, the Mexican tradition of physical anthropology spurred by Juan Comas has been well ahead of the United States in the use of a political economic analysis (Marquez-Morfin 1998). A recently discovered sugar plantation cemetery for enslaved Africans in Oaxaca (Hacienda de San Nicolas Ayotla) was reported by historian Arturo Mota and anthropologists Abigail Meza and Socorro Baez at the X Coloquio Internacional de Antropología Física, Juan Comas. The site, on which excavation began in 2000, is the first African Diaspora bioarchaeological project in Mexico.

(Jacobi et al. 1992). These differences between archival and skeletal data for estimates of infant mortality will be important to recall when New York African Burial Ground Project comparisons are made between skeletal data on African captives and Trinity Church burial records on the English slaveholding population.

The work of the physical anthropologists discussed earlier is modestly integrated with the more cultural and historical work reported elsewhere in other, specialized articles (e.g., Handler 1997). This common limitation of disciplinary and specialist journals leaves biological assessment in isolation and thus limits biocultural interpretations. Site reports can overcome this segmentation; for example, Armstrong and Fleischman (1993) evaluated four African skeletons from the Seville Plantation, Jamaica, combining paleopathology, history, and archaeological analysis. The elegant simplicity of these house burials, which showed cultural continuity between the Asante, plantation laborers, and maroons and their symbolic goods, accentuated their evocative individual biological characterizations. The sample was, however, inadequate for statistical analysis.

A good example of decontextualized, descriptive approaches is also found in the Caribbean, the Harney Site Slave Cemetery, on private land in Montserrat. The site was being destroyed by swimming pool construction when archaeologist David Watters obtained the owner's cooperation in salvaging some of the skeletal remains. The site was so much disturbed that artifacts could not be established as grave goods, although a few pottery sherds were found, including imported and "Afro-Montserratian" unglazed wares. Like Newton Plantation and the New York African Burial Ground site, graves were in west-east/head-foot orientation (Watters and Peterson 1991). The remains of 17 black slaves were discovered during construction (only 10 of which were in situ burials) and were sent to the University of Tennessee for study (Mann et al. 1987). There were 6 adult males (average stature 5 feet 11 inches), 6 adult females (5 feet 1 inch), 1 probable male, and 4 subadults, but no infant or young child remains.

The study was forensic in that its purpose was to estimate "age, race, sex, and stature" and was highly descriptive. The authors also reported that 17 of 92 teeth exhibited caries, 2 showed pipe notches, and the cases of root hypercementosis and hypoplasia were shown to be "similar to those described by

Corruccini et al." (1982, 1985) in Barbados. Anemia (porotic hyperostosis) was frequent, but periostitis (representing infectious disease) was low. Three women had fractures, one of the right fibula (lower leg), one of the left thumb, and one of the right ankle that had become severely infected. Degenerative joint disease was moderate and related mainly to aging. The authors pointed to a harsh lifestyle with periodic severe malnutrition and common illnesses, leading to early death.

Although the size of the sample was small, the lack of local historical context is striking. West Indies shipping data from one historical source is mentioned along with two comparisons with the Newton Plantation skeletal study. The remaining literature was solely forensic or skeletal biological. There was no discussion of the conditions of life on the Bransby Plantation (or of Montserrat as a whole), where the interred had previously lived and worked. The repeated references to their study of the "Negroid traits" of the "Black slaves" (Mann et al. 1987; and Watters and Petersen's [1991] recapitulation of Mann et al. [1987]) showed a remarkable similarity to the outmoded typological approach of an earlier era in which "racial" identification substituted for the construction of a human cultural and historical identity.¹³ Indeed, these same criticisms have been raised regarding the initial forensic field studies of the New York African Burial Ground Project.

The bioarchaeology of the African Diaspora in the Americas has today developed several different trajectories. The biocultural and descriptive/ forensic approaches represent polar opposites of a

¹³ The study of the Mt. Pleasant Plains (1850–1900) in Washington, D.C., is highly descriptive and shows a similar disregard of known history. Although a census of local migration is discussed and there is an extensive review of old Washington cemeteries, little is said of the people who used them. The 13 African American skeletons showed apparent good health, which may indicate a more affluent black urban population or a rural existence during the pre- and early industrial period, a time before a rapid decline in dental health and relative physical health. Such interpretations would be very much enhanced by some details about the social and economic situation of the people who used this cemetery. Notably, recent community activity has focused on this site. Once owned by the Colored Benevolent Association, much of the cemetery was purchased by the Smithsonian's National Zoological Park in 1890, and another portion (from which the 13 skeletons originated) was sold to a developer in 1959 who was supposed to have relocated the remains. Recent public objections grew out of the zoo's attempt to convert part of this land into a dump while claiming that the Smithsonian was not bound by the NHPA (Coates in Washington City Paper 3 April 1998).

continuum. 14 Our project has made use of the biocultural approaches that emphasize the need for substantial historical background and analysis of the political and economic relations upon which a population's biological condition depends. The Boasian cultural environmentalist tradition can be found at the root of biocultural anthropology, yet a theory of the impact of social "circumstances" upon the "physical man" is also found a half century prior to Boas's work in the diasporan writings of Frederick Douglass, followed by Firmin and Cobb. Douglass's dialectic of social action and biology (e.g., "a man is worked upon by what he works on") was pitted against the racial reductionism of the founding fathers of American physical anthropology (Douglass 1854:304–305). As with the biocultural and historically grounded bioarchaeological studies that began to appear in the 1980s, our

¹⁴ As these specialties differ much in theory but little in method, the specialty of "forensics" (which is the more recognizable of the two to the public ear) has often been used as a catch-all for crime-scene and archaeological research involving skeletons, although the term forensic actually refers to the identification of recently disposed (usually no older than 100 years) human remains for the police and courts. The required training for forensics has to do with the identification of individuals, not the analysis of populations that must be understood in a social and historical context. When skeletal remains are first discovered, forensic anthropologists are the proper specialists for establishing whether the remains are crime-related (therefore falling under their purview) or whether they are older, archaeological remains (requiring demographic and epidemiological analysis as well as knowledge of the specific historical context of the remains under study). The increasingly sloppy usage of a "forensics" expertise in government contracting for bioarchaeological research, beyond first discovery, would tend to reinforce ahistorical interpretations of skeletal populations. These differences are especially important when, in the interest of objectification, race substitutes for the history of African Diaspora sites when there is no "Negroid" culture or history. Thus, what this research team considers an overextension in use of forensics consultation instead may simply be a utilitarian and convenient approach for contractors and clients, the frequent use of which occurs not in order to deliberately undermine the construction of African American history and identity, but rather as the unconscious residual of a "bottom line" orientation, naïve scientism, insensitivity of the potential for historical context, or social distance from black people who might be more inclined to question its application.

research project is interested in the dialectical relations of biology, culture, and history. The relationship among these fields tells a human story of the bones of a past community. The New York African Burial Ground Project, furthermore, utilizes the kinds of broad interdisciplinary syntheses, diasporic concept, geographical scope, critique, and public engagement that are consistent with the intellectual traditions of diasporic people. The following chapter describes how these aspects of theory further advance the effort to reveal dynamic, human history while striving to resolve some of the ethical and epistemological dilemmas of nonreductionist research.

Studies that substitute racial identification for culture and pathological assessments for history remain antithetical to these approaches. Their narrowness of scope appears to be consistent with the European Enlightenment's reductionist notions of objectivity in which "parts" (especially biological parts) become important to understand as abstractly separable from the larger "whole" of their interaction. It is clear nonetheless that these descriptive studies are not without political messages and biased characterizations of the populations under study. Looking back at the development of African Diaspora bioarchaeology, it becomes apparent that a lack of interest in, and understanding of, the social, cultural, and historical dimensions of "the black" often allowed researchers to be satisfied with very narrow interpretations of bioarchaeological sites. The experiences of the people buried at these sites were dehumanized by the ostensible objectification of racial classification and ahistorical pathology assessments. Opportunities to explore the complex human dimensions of each skeletal biography, to know a population's cultural identity and societal origins, or to examine the local and international political and economic "circumstances" of a now-skeletal population were lost. Studies that fail to examine such human dimensions of African Diaspora skeletal data ultimately create the impression of people without a history.

CHAPTER 3

Theory: An Ethical Epistemology of Publicly Engaged Biocultural Research

Michael L. Blakey

The approach taken to the organization and interpretation of data from the African Burial Ground involves the following four main elements. The ways in which these elements have guided the research are discussed in this chapter. These theoretic principles can be generalized and extended to a broader range of research projects than our study of the New York African Burial Ground.

- 1. While seeking to recognize sociocultural and ideological influences of research, critical theory in the vindicationist vein allows the interpretations to be scrutinized, empowering factual information through scientific and other scholarly research. The fundamental principle rests upon acknowledging that political and ideological implications are intrinsic to science and history, and that choices about these are unavoidable (Blakey 1996, 1998b; Douglass 1854). The pervasive incorporation of African Diaspora intellectual traditions of this kind into the dialogue around New York's African Burial Ground opened a special opportunity for applying this long-standing critical view of historical knowledge to a bioarchaeological study. Many brands of "critical theory" have emerged in recent decades, including neo-Marxist and postmodernist thought in American and European archaeology. The synthesis of criticism that emerges in this case was referenced previously (Chapter 2) as part of the evolved understandings of the social and political embeddedness of history and anthropology among African Diasporans. Yet as participants in the intellectual development of a broader "Western" world, such critical thought connects with other intellectual traditions whose experience has led to similar insights.
- 2. Public engagement affords the communities most affected by a research program a key role in the design and use of research results. A respect for pluralism and the ethics of working with groups of people who

- historically were placed at risk of social and psychological harm recommends an acknowledgement of this community's right to participate in research decisions. Scholars balance ethical accountability to such communities with responsibility to standards of evidential proof or plausibility that define the role of scholars. The goal of this collaboration is not simply ethical: public engagement affords opportunities for advancing knowledge and its societal significance by drawing upon broader societal ideas and interests. The democratization of knowledge involved here is not predicated on the inclusion of random voices, but on democratic pluralism that allows for a critical mass of ideas and interests to be developed for a bioarchaeological site or other research project, predicated on the ethical rights of descendant or culturally affiliated communities to determine their own well-being.
- 3. Multiple data sets facilitate cross-validation of the plausibility of results. Results may be rejected, accepted, or recombined into newly plausible narratives about the past based on how diverse results of different methods compete or reconfigure as a complex whole. The required multidisciplinary experts engage in a "conversation" that produces interdisciplinary interpretations of the archaeological population or sample. Diverse expertise provides for recognition of a subject matter that might otherwise go unnoticed in the individuals and communities under study. By revealing multiple dimensions of human subjects, this approach can characterize even skeletal individuals that more nearly resemble the complexities of human experience than are possible in simple, reductionist descriptions.
- 4. An African Diaspora frame of reference for the New York population provides a connection both to an Atlantic-world political economy and a transatlantic cultural history that is more reflective of the

causal conditions existing throughout the life cycle of members of this eighteenth-century community, than was the local Manhattan context of enslavement. The broader diasporic context of their lives also adds to an understanding of the population as more fully human than is afforded by a local context of enslavement. Non-African Diaspora research might also circumscribe, differently, the scope of time and space required to examine a sufficiently large political economic system and social history to begin to explain how, what, and why its subject came to be.

Critical Theory

African Diaspora intellectuals have, since late slavery, acknowledged the intrinsically political implications of anthropology and history with which they were confronted. Indeed, the historical record of American physical anthropology has continued to demonstrate that the physical anthropologists with the most emphatic interest in "objectivity" have nonetheless participated in the creation of racial and racist ideology (Blakey 1987, 1996; Gould 1996; Rankin-Hill and Blakey 1994). The previous chapter has shown how even highly descriptive studies can represent political ideology. White supremacist notions are supported when representations of blacks are so shallow and biological as to denude them of human characteristics and motivations. As racialized "black slaves," African Diaspora populations may be removed from culture and history, an objectification that some view as consistent with the ideals of Western science. Here, it is both the biological categorization of identity (race) and the omission of history and culture that deny humanity to these historic populations. While this process dehumanizes the black past, Euroamerican history is also transformed to one in which Africans are not recognizable as people. They become instead a category of labor, the instruments or "portmanteau organisms" of whites (see Crosby 1986), that are therefore not readily identified as the subjects of human rights abuses. These aspects, even of description, transform American history.

Douglass (1854) asked scholars to simultaneously take sides *and* be fair to the evidence. This contrasts with differences from Enlightenment notions of objectivity because it is accepted that science and history will always be subjective, influenced by current biases and interests. How can one take a position and be fair to the evidence? One conceptualization of the

purpose of historical research that may not violate either of these goals is the assumption that research into the diasporic past is not simply the pursuit of new knowledge. Indeed, African Diaspora traditions of critical scholarship have assumed that the search is for the reevaluation of old, politically distorted and conveniently neglected knowledge about black history. The research design of the New York African Burial Ground Project asserts that the motivation to correct these distortions and omissions will drive the research effort in part. This understanding of the ideological nature of the constructed history allows our team to scrutinize data more critically than were the research team to assume ownership of special tools for neutral knowledge. We need to be more circumspect and aware of how our interpretations may be used and influenced by societal interests beyond the academy walls. In the tradition of vindicationism and activist scholarship, our criticism holds as an assumed goal the societally useful rectification of a systematically obscured African American past. The fact that the African Burial Ground should not have existed, from the standpoint of the basic education of most Americans, supports the need for a vindicationist approach. The history of the northern colonies and of New York has been characterized as free and largely devoid of blacks. That of course is untrue. The history that denies the presence of blacks and of slavery in places where these actually did most certainly exist is not accidental. Such a history must be deliberately debated. Yet societal interests also influence our alternative interpretations, and they may influence policy and social action. We are tinkering with other people's identities. Who are we as individual scientists to decide how to formulate our research plans relative to such potentially powerful societal effects?

Public Engagement

Although we are responsible for our epistemological choices, it is perhaps inappropriate for researchers to make those choices in isolation. The epistemological choices—that is, the choice of ways of knowing the past by virtue of the selection of research questions, theories, and analytical categories—are also the justifiable responsibility of the broader communities whose lives are most affected by the outcome of research. This recognition of the potential for a democratization of knowledge merges epistemological concerns with ethical ones. The community with which we work—the living descendants or culturally affiliated

groups—has an ethical right to be protected from harm resulting from the conduct of research. The American Anthropological Association's Statement on Professional Responsibility and Ethics, the World Archaeological Congress's Ethical Statement, and the new ethical principle of the American Association of Physical Anthropologists, which largely recapitulates the former, are key examples of this ethical standard. Community members have a stake in how research is conducted if it might impact them negatively or positively. The National Historic Preservation Act allows the public a say in whether research will be done at all, and NAGPRA legislation gives federally recognized Native Americans and Pacific Islanders rights to determine the disposition of their ancestral remains and sacred objects.

Many archaeologists and physical anthropologists have resisted these ethical and legal obligations, arguing that the autonomous authority of researchers needs to be protected for the sake of objectivity and the proper, expert stewardship of knowledge about our past. That position is based on assumptions that are inconsistent with our critical theoretical observations of intrinsic cultural embeddedness of science that have informed the activist scholarship in the diaspora. If science is subjective to social interests, it seems fair, at least, in the American cultural ethos, to democratize the choice of those interests that scientists will pursue. Because the people most affected are also to be protected, it is least patronizing for anthropologists to enter into a research relationship with descendant communities by which those communities protect themselves by participating in the decisions regarding research design. Indeed, a "publicly engaged" anthropology of this kind has been proposed by a panel of leading anthropologists who have linked the practice to American values of democratic participation and pluralism (Blakey et al. 1994a; Forman 1994). Useful and exciting paths of inquiry, as well as elevated scrutiny of evidential proof, are revealed when naïve objectivity is replaced by ethics. It is very interesting to consider that the idea of objective methods, capable of revealing universal truths, may have served to obscure the need for ethics of accountability to nonscientific considerations in the pursuit of knowledge.

Our project has conceived of two types of clients, the descendant community most affected by our research (the ethical client) and the GSA that funds the research (the business client). Although both clients have rights that should be protected, the

ethical requirements of the field privilege the voices of descendants. Descendants have the right to refuse research entirely, and the researcher's obligation is to share what is known about the potential value of bioarchaeological studies. Our project received permission to present a draft research design to African Americans and others interested in the site. Our purpose was to elicit comments, criticism, new ideas, and questions that the descendant community was most interested in having answered. The result of this public vetting process is, we believe, a stronger research design with more-interesting questions than would have likely come from researchers alone. A sense of community empowerment, in contrast to the preexisting sense of desecration, was fostered by our collaboration. Permission to conduct research according to the resulting design was granted by both clients. Public pressure in support of a more comprehensive research scope than usually afforded such projects resulted from the fact that the research questions interested them and that they claimed some ownership of the project. Thus, research directions, an epistemological concern, were fostered by public involvement, an ethical concern. The queries produced by the engagement process were condensed to four major research topics:

- 1. The cultural background and origins of the population
- 2. The cultural and biological transformations from African to African American identities
- 3. The quality of life brought about by enslavement in the Americas
- 4. The modes of resistance to slavery

In applying this approach to an ethical epistemology, experience has shown that social conflict is an inherent possibility of public engagement, as are bonds of common meaning and interest between scholars and the public that would not otherwise have been possible. In 1993, while vetting the research design in a Harlem State Government auditorium, the panel of researchers was confronted by some African Americans who objected to our references to slavery in Africa, insisting that slavery had never existed there. We were able to convey familiarity with what we considered to be a reflection of the concern of some African Americans that the Euroamerican community's frequent references to African slavery were often meant to suggest that Africans were responsible for the slave trade. That apologetic spin abdicates the responsibility of Europeans and Euroamericans (the "demand" side of the trade) for American slavery. We were also sensitive to the frequent misconception that those brought to the Americas were slaves in Africa, rather than free people who had been captured and enslaved. With recognition of this understanding, and of differences and similarities between chattel and African household slavery, our requirement as scholars was, nonetheless, to indicate that we would refer to slavery in Africa because of the material evidence for its existence there. It was the community's right to decide whether or not it would engage scholars to conduct research on the African Burial Ground or to have only religious practitioners or some other treatment. If we were to be involved, it was to be as scholars and that meant standing on evidence. It is significant, too, that the diasporic scholars on the panel knew the critique that had informed the community concern about African slavery and understood it to be more than a matter of emotional sensitivity. The panel responded that we would attempt to maintain an awareness of the misuses of the fact of slavery in Africa in the course of our work, which we did.

The researchers were strongly urged to refer to the Africans of colonial New York as "Africans" or "enslaved Africans," rather than slaves. This recommendation, upon deliberation and discussion, seemed cogent and not inconsistent with material facts. The critical consideration of the community representatives was that "slave" was the objectified role that Europeans and American whites had sought to impose. The Africans themselves, although clearly subject in large part to the conditions of the role of "slave," had often both previous experience and self-concepts that were as complex human beings "who had their own culture before they came here," as community activist and artist Adunni Tabasi put it (New York Beacon, 23 August 1995), and who resisted slavery psychologically, politically, and militarily according to material facts. Thus, we agreed that we represented the perspectives of slaveholders by using the dehumanizing definition of the people we were to study as slaves, when "enslaved African" reasonably emphasized the deliberate imposition of a condition upon a people with a culture. Similarly, we accepted, as did the state and federal agencies, the naming of the "Negroes Burying Ground" the African Burial Ground for similar reasons to the use of "enslaved Africans." Sherrill Wilson found, in the course of background research for the National Historic Landmarks designation of the site, that Africans named their institutions "African" in New York City as soon as they obtained

the freedom to put such nomenclature on record in the early nineteenth century.

This case exemplifies the value of the process of public engagement and the deliberation, potential conflict, and reasonable compromise that was often involved in this process. The purpose was to find a synthesis of scholarship and community interests, if a synthesis could be achieved. Such deliberations rely upon trust, and that is as well established by a demonstration of the integrity of scholarship as it is by the researcher's recognition of the community's ultimate right to determine the disposition of its ancestral remains.

Choice of language was one of the most emphatic contributions of the community that did not seem as comfortable with questioning some of the methodological techniques that were under consideration for study of the remains from the African Burial Ground. Invasive methods were discussed and accepted as required to answer the important question of origins that has long been keenly important to African Americans. Family roots and branches had been deliberately severed by the economic expediencies and psychological control methods of slavery. Another community emphasis of importance to the course of the research project was the insistence on including African and Caribbean research in our geographical and cultural scope and on extending the temporal parameters back to the Dutch period when, despite the lack of historical reference, the cemetery might have been used for the burial of Africans and their descendants. These ideas helped to define the project's research questions and choice of expertise that expanded to an African and diasporic scope; this has proved to be essential for recognizing the specific artifactual, genetic, and epidemiological effects of the cemetery population throughout its history and at different points in the life cycles of the persons buried there. Furthermore, our team's recognition of African suppliers for a Euroamerican-driven transatlantic trade in human captives positioned us properly to receive a senior delegation of the Ghanaian National House of Chiefs. They acknowledged regretfully the involvement of some past African leaders in this practice.

Especially during the earlier stages of the research, there were attempts to contain or reduce the project by limiting project and community input into aspects such as the memorialization plans, the interpretive center, and others. Whenever the project was burdened by apparently intractable bureaucratic procedures, the leadership returned to the public forum and was

brought as community advisors to local, state, and national legislators to make these efforts transparent to the public. Congressmen and community members were able to reiterate their support by letter and verbally to the GSA, which over time became more responsive and supportive of the project, but ongoing challenges to sustained and smooth operations still occurred at times. Although some proposed aspects of the research design (Howard University and JMA 1993) were not funded, the integrity of the researchers' relationship to the ethical client—the descendant community—was maintained by standing steadfast with the community's insistence that GSA carry through with its commitments. The GSA was not allowed to disregard its obligations or promises to the black community. After its building was completed, the agency approved funding for additional aspects of the research design and engaged in interactions with the community related to memorialization, reinterment, and interpretation, among others. This project's leadership sought always to give GSA its best and honest advice.

Were this project not linked to community interests, there might have been fewer conflicts with the federal agency. On the other hand, community engagement defined much of the significance of the project that would represent descendant community empowerment. Harrington (1993) has maintained that part of that empowerment was shown by the community's resolve and effective opposition to desecration by the insensitive leadership of a large federal agency. On the other hand, the project's ability to withstand and negotiate prevailed as a result of having a strong base of support in the general public and among concerned legislators. Funding, even under these conditions, was adequate for the broad scope of work, which is described in this volume, and the project's two companion reports, Volumes 2 and 3 of this series, on the archaeology and history, respectively, of the New York African Burial Ground.

Finally, the project was designed to utilize a biocultural and biohistorical approach and rejected race estimation in favor of culturally salient categories of ethnic origin using DNA, craniometry, archaeological artifacts and features, and the available historical record. We had no need to reinforce the concept of race through our research, especially when that concept obscures the cultural and historical identity of those who are made subject to its classification. Moreover, new molecular technologies and specialists in African mortuary data could put us on the trail of ethnic groups with discernible histories. Over 50 physical anthropologists wrote to the GSA, generally supporting the forensic approach to racing (Cook 1993; Epperson 1996). Indeed, a number of these letters and comments suggested that the use of DNA, chemistry, and cultural traits such as dental modification could be of no value in determining origins. However, the backing of the descendant community, which was far more interested in social and cultural history than racial classification, enabled the project to maintain its programmatic thrust, despite the opinions expressed by these physical anthropologists.

The essential point here is that the questions and approaches that have driven the research of the New York African Burial Ground Project were produced by a public process of empowerment that involved distinct supporters and detractors. What we have been able to accomplish for present evaluation and future development has been the result of protracted struggle with those researchers who customarily have expected to control this kind of contracted study in order to create a research enterprise that is not repugnant to the African American community. It is also a project of unusual epistemological complexity. As a result, the project has had an impact upon both the scientific community and public discussions of human rights and reparations for slavery (see Blakey 1998a, 1998a, 2001; La Roche and Blakey 1997; Perry and Blakey 1997). Six documentary films and frequent and lengthy textbook references to the New York African Burial Ground Project (Pearson [1999] and Thomas [1998], among others) also suggest that the project has raised interesting issues for a broad range of people.

Multiple Data Sets

Multidisciplinary expertise was repeatedly shown to be essential in our attempts to answer the project's major questions regarding the origins, transformations, quality of life, and modes of resistance of New York Africans. Examining a question such as the origin of the population with different sets of data such as genetics, anthropometry, material culture, history, and chemistry was valuable.

1. Cross-validating the plausibility of findings on the part of a particular specialized method or set of data is provided in the form of complementary or conflicting results from an alternative data set. Contrasting results were at least as useful as complementary data because these raised new questions and possibilities about interpretation or the need for methodological development. Biological data (such as molecular genetics)

have often been privileged over cultural and historical data. We found that genetics data, read in isolation of other information, can lead to erroneous conclusions relative to more verifiably accurate cultural and historical evidence. We did not privilege the biological data but benefited from the discussion among the differing results that led us to mutually plausible conclusions. Metaphorically, one voice allowed the floor with impunity can easily make false representations without there being any means of evaluation or accountability. When there are several voices in a dialogue about facts, the standards of plausibility are elevated by the accountability that the facts generated by each method have to one another. This sort of "discussion" among different data sets becomes a means, if not of objectivity, of raising standards of plausibility and of fostering a dialectical process by which new research directions would emerge.

- 2. Multidisciplinary research has allowed us to recognize more diverse dimensions of the individual biographies and community histories than any one discipline could allow us to "see" in the data. By assessing layers of origins data, for example, we construct the population in terms of its demography, pathology, genetics, cultural influences on burial practices, environmental exposures in teeth, religious history, and art that allow the construction of a more complexly human identity at the site. A fraction of these disciplines would have produced only a portion of these richer human qualities we have worked to understand because observations are largely limited to the specialized knowledge and research tools required to make them.
- 3. This disciplinary breadth, inclusive of biology, culture, and history, makes possible the kind of political economic analysis in which we are interested as biocultural anthropologists. The biological data are interpreted in relation to the population's social, political, and economic history. Yet some studies, such as those found in Chapter 5, will rely on evolutionary theory but remain historical in its attempt to discover cultural origins with biological evidence. There needs to be a "tool kit" of theories for purposes of different research questions. The break with tradition here is that such an approach is not in search of a unifying theory; physical anthropology and human evolution are not synonymous.

Diasporic Scope

The descendant community had been forceful in its insistence upon our examination of the African back-

grounds for the New York population. Their idea was that these were people with a culture and history that preceded their enslavement and continued to influence them even in captivity. We found the African and Caribbean connections important for understanding the site in many ways. We therefore engaged archaeologists, historians, and biologists with expertise and experience in research in all three areas. Similar to the value of multidisciplinary resources of the project, the diasporic scope of expertise allowed us to find meaningful evidence where narrower expertise could not have seen it. The use of quartz crystals as funerary objects required an African archaeological background because Americanist archaeologists might have assigned them no meaning (see Perry 1997, 1999); the heart-shaped symbol believed to be of Akan origin and meaning (see Ansa 1995) was assumed to have a European, Christian meaning in the absence of anyone who could recognize an Akan adinkra symbol. Thus, the geographical and cultural connections to the site have been enlarged by the diasporic scope of the researchers.

The previous chapter showed how bioarchaeological projects are often limited to very localized spatial and temporal contexts of interpretation. Were this project to have limited its scope of interpretation to New York City's history, or to the cemetery itself, the African Burial Ground would have revealed a colonial New York population understood for the immediate conditions of its members' enslavement, or less. A larger international context has revealed a cultural background for captives and their descendants, an ebb and flow of migration between different environments and social conditions, shifting demographic structures related to a hemispheric economy, and the interactions of people and environments that changed over the course of the life cycle to impact their biology in multiple unhealthy ways. By understanding these African captives as people from societies of their own, who were thrust into enslavement in an alien environment, perhaps their human experience can be more readily identified. This, at least, was the expressed goal in meetings of descendant community members that informed the research design. The desire to reach back and critically examine that experience is motivated by the scope of interests of an African Diaspora concept that has traditionally included a vindicationist approach to black history that stands against Eurocentric historical apologetics.

A variety of other specific theories (or explanations relating observations to systems that can be

generalized, within which they have meaningful implications for us) have been applied in explaining particular phenomena observed at the New York African Burial Ground. The above approaches, however, form the most general framework of our analyses. The metatheoretical approach described above comprises a process for generating the questions we ask, for assessing the reasons why we are asking those questions, and for selecting the theory with which the information is organized to answer those questions. These approaches are also perhaps the most unique to our situation in which they emerged as special opportunities to resolve problems and contradictions met with at the site. These are, nonetheless, procedures that can be generalized for bioarchaeological work in many kinds of situations, not limited to this site or to African Diaspora bioarchaeology.

The three separate disciplinary reports for the New York African Burial Ground Project modestly represent the potential for interdisciplinary integration of data. The four Sankofa Conferences (1995, 1998, 2002, and 2004), which involved 24–33 of the project's multidisciplinary specialists, and the exchange of

ideas that have proceeded over the intervening years in a decade of research, have influenced substantively most of the biological analyses of this report. Moreover, this report as well as *The Archaeology of the New York African Burial Ground* and *Historical Perspectives of the African Burial Ground*, Volumes 2 and 3 of this series, are meant as the last stage prior to a synthesis of these into an integrated report, which we look forward to developing in the future. That latter report is projected to be less technical and more accessible to the general public.

Skeletal Biology of the New York African Burial Ground, therefore, is one major achievement in an ongoing research program that the researchers expect to continue beyond the current contract with the GSA. It nonetheless represents the results of an exhaustive skeletal recordation on 419 human skeletons from the largest and oldest colonial archaeological population in the Americas that has been studied to date. The extensive methods of cleaning, inventorying, reconstructing, data gathering, and documentation for this and future studies—an enormous amount of careful work of more than 100 professionals, technicians, and students—are reported in the following chapter.

CHAPTER 4

Laboratory Organization, Methods, and Processes

M. L. Blakey, M. E. Mack, K. J. Shujaa, and R. Watkins

Laboratory Organization

This chapter describes the organization of skeletal recordation in the laboratory. This work required specialized personnel, task teams, and processes that converted fragile fragments of soil-encased bone into skeletal elements that revealed accurate anatomical structure and observable effects of physiological processes that could be assessed for genetic, demographic, and pathologic information. That information was then coded and entered into a computer database where all information on each individual could be tracked and statistical data on sample groups of skeletons could be manipulated. Skeletal recordation was completed in 1999 resulting in an estimated 250,000 observations on remains representing 419 individuals. Photographic and radiographic documentation and sampling of bone and dental tissue were also taken for future research. A collection containing more than 55,000 photographs (mainly slides and digitized images) and more than 2,000 X-ray radiographs, and a small sample of cranial CAT scans has been assembled.

Facilities and Environment

Skeletal recordation (processing and data collection) was conducted in the W. Montague Cobb Biological Anthropology Laboratory of Howard University. The Cobb Laboratory consists of approximately 3,000 square feet of space. Three laboratory rooms, a storage room and hallway, and two offices make up the laboratory, which is equipped throughout with electronic security and environmental controls (Figure 10). During the study, room temperature was maintained at 70–72°F and 50 percent relative humidity. Three freestanding back-up dehumidifiers were used during summer rains, when humidity briefly exceeded the desired

level. Humidity was monitored by hygrometers in each laboratory room, and a handheld hygrometer was used to monitor the interior environment of skeletal storage boxes. Only once was there an observed distortion of bone due to humidity; this involved the slight expansion of a postmortem humeral fracture that had been out on an examination table during a roof leak. The airtight interior steel cabinetry, in which remains were stored, further limited the effects of environmental fluctuations in bone.

Exterminators eliminated pests annually. Moth crystals are regularly used inside cabinets of the laboratory's permanent anatomical collection (the Cobb Human Skeletal Collection) but were not required for the remains from the New York African Burial Ground. No evidence of insect or mammal infestation was observed in this collection during skeletal recordation.

Fungi were observed in 25 skeletons, and 3 additional skeletons were isolated with the 25 infested cases because of their close proximity to 2 of them. Procedures for handling these cases are discussed later in this chapter. All skeletons were sampled for fungus identification and stored in airtight steel laboratory cabinets labeled with biohazard signs required by Occupational Safety and Health Administration (OSHA).

The laboratory is equipped with benches, tables, stools, clean bench, fume hood, proper lighting, sinks, refrigerators, photography equipment, a small X-ray machine, computers, mechanical and digital calipers, a microscope, and other necessary research tools.

Personnel

The following Cobb Laboratory personnel were involved in skeletal recordation and related admin-

Figure 10. Work space in the main "blue" laboratory.

istration of the New York African Burial Ground Project.

Project and Scientific Director

The scientific director had responsibility for all project administration and scientific design, research, and reporting as well as public and client relations. The scientific director organized, controlled quality, and directed all research activities and wrote all research designs, cost proposals, and reports with the assistance of senior personnel. This position coordinated all components of research within and apart from the Cobb Laboratory. A Ph.D degree, experience and scholarly productivity in bioarchaeological research were requirements for this position.

Laboratory Director/Osteologist

The laboratory director was responsible for laboratory management, including relevant organization, technician training and quality control, supervision, and maintaining adequate laboratory supplies. The director was also responsible for dental data collection and contributed to research analysis, reporting, and public and client relations. The director managed the flow of information and materials exchange with other laboratories, scheduled and conducted public tours, and reported to the scientific director. An M.A. degree and experience in bioarchaeology were requirements for this position.

Office Manager/Administrative Assistant

The office manager had oversight of office management including the laboratory's payroll, bookkeeping,

purchasing, travel arrangements, communications, and records keeping and assisted the scientific director in all administrative tasks of the project while supervising clerical staff. A B.A. degree in management and clerical experience were requirements for this position.

Osteologist

The osteologist conducted assessments of bone pathology with the scientific director's supervision and assisted the laboratory director and scientific director in technician training and quality control. The osteologist supervised assisting technicians, advised photography as needed, and contributed to analysis and reporting. An M.A. degree and experience in paleopathology were requirements for this position.

Osteological Technicians (Four Simultaneous Positions)

Osteological technicians (OTs) conducted age and sex assessments, took anthropometric measurements, supervised processing staff and quality control at their work stations, supervised or conducted photography and radiology as needed, assisted curation, and conducted public tours. The most experienced OTs conducted bone pathology and dental assessments under supervision of the scientific director and laboratory director and contributed to analysis and reporting. Osteological technician assistants reported to the laboratory director (except those persons conducting bone-pathology assessments), who also reported to the scientific director. A B.A. degree in anthropology

Figure 11. Data Systems Manager Douglas Fuller and Project Director Michael Blakey discuss organization of the database.

and experience in skeletal biology were requirements for these positions.

Osteological Technician Assistants (up to 12 Simultaneous Positions)

Osteological technician assistants (OTAs) assisted in all technical tasks of recordation, especially processing, which included pedestal reduction, cleaning and reconstruction of skeletal elements, photography and its organization, inventory radiology, and public tours. The most advanced OTAs were also involved in supervised anthropometric measurement, dental casting, sectioning and sampling of bone, and curation. OTAs mainly reported to the OTs and were assigned to the laboratory director and osteologist as needed. OTAs were graduate and undergraduate students of anthropology, anatomy, human development, and history and related fields, who had completed a course in human osteology and had specialized training in recordation techniques in the laboratory.

Medical Photographers

The medical photographer undertook photographic documentation of skeletal observations and inventory, managed the photography laboratory, assisted in purchasing photographic equipment and supplies, and kept the log of photographs. This position reported to the laboratory director and was advised by the osteologist and OTs. The medical photographers were required to have experience in skeletal-recordation photography or a related subject of medical photography.

Data Systems Manager

The data systems manager was responsible for maintaining the relational and statistical databases, computer hardware and software, and producing statistical analyses for the scientific director (Figure 11). This position reported directly to the scientific director and required an individual with at least a B.A. degree and experience in database management.

Botanist (Two Positions)

The project botanists sampled and identified fungi (molds), determined their genera, advised the scientific director regarding any potential biohazards, and recommended biocides and safety procedures. These botanists reported to a senior botanist with a Ph.D. degree. Enrollment in a doctoral program in botany was a requirement for this position.

Figure 12. Cobb Laboratory staff.

Conservators (Two Positions, as Needed)

Conservators were contracted as consultants to work as needed to stabilize artifacts found during skeletal processing. They reported to the scientific director.

Consultants and Specialists (Several Positions)

Consultant positions were filled by specialists in bone and dental chemistry, DNA, and histology, the associate director for biological anthropology and other senior researchers. These consultants, in general, held Ph.D degrees and were recognized nationally or internationally as leading scholars in their areas of specialization.

Secretary

The secretary, who reported to the office manager, was responsible for communications and assisted with all clerical work.

The above positions composed the technical, management, and administrative staff of the Cobb Laboratory. All laboratory staff collectively contributed to the interdependent processes required for all data collection and analysis. Weekly meetings and periodic training sessions facilitated staff development and the integration of laboratory tasks. Respect for specialized skills and responsibility for productivity was part of a laboratory philosophy that also emphasized training. Each member of the team was expected to teach

others how to perform the member's work (to make that individual "redundant") as a means of continual improvement of the laboratory's resources and opportunities for individuals (Figure 12).

Burial Processing and Methodology

Cleaning and Reconstruction

During burial processing, OTs and OTAs wore latex (or nonallergenic) examination gloves, dust masks, and laboratory coats as a barrier to contagion and to prevent the contamination of bones with the researcher's own DNA. All sachets (acid-free tissue packets with the bones) were wrapped for shipment and storage.

In addition to wearing the protective clothing mentioned above, respirators replaced dust masks when sachets were opened for the first time because of the unknown nature of fungi that had infested some of these remains in New York (Figure 13). If no molds appeared to be present, the technicians proceeded with cleaning, reconstruction, and data collection. If molds did appear to have infested the remains, the entire burial was immediately isolated in airtight cabinets until project botanists could sample these molds for identification. After the application of ethanol as a biocide, some fungal-infested remains would later be processed under conditions specified by the University Biohazards Committee guidelines. Two sets of remains infested with nonhazardous levels of

Figure 13. Safety while unwrapping burials.

the harmful and enigmatic fungus, *Blastomyces*, and three individuals located near to them which shared the same cabinet, remained quarantined.

Each skeleton was cleaned of the surrounding soil matrix in order to observe the bone surfaces for information. In many instances, the remains were encased in soil blocks, or "pedestals," that had to be reduced by excavating as much of the soil as was practical in order to remove or reveal bones (Figure 14). The scientific director, laboratory director, or osteologist advised the OTs and OTAs on the extent of possible reconstruction and efficient techniques for cleaning and reconstruction under different circumstances and made decisions about immediate photography or data

collection to prevent data loss when bones seemed in jeopardy of collapse. It was often not feasible to spend many hours or days completely reducing soil pedestals or reconstructing tiny fragments of bone when they could ultimately reveal little information because of very poor preservation. Frequently, the block of soil matrix was all that prevented a bone from disintegrating, making it advisable to expose as much informative bone as possible while keeping it partly encased and maximally intact. Photographs were regularly taken before and after the pedestalreduction process for full documentation, because some friable bones and important observations will inevitably disintegrate when removed from soil that reinforced their integrity. The vast majority of skeletal elements, however, were removed from their matrices and observed complete.

Cleaning was accomplished with small dental tools and brushes, and cotton applicators were used to apply a 75 percent ethanol/25 percent water solution to soften the soil that had become dehydrated and hardened in New York. Measures were taken to minimize the application of ethanol to the bone itself, however, in order to limit destruction of DNAbearing proteins. Bones earmarked to be sectioned were flagged with colored tape to be sampled for later genetic, histological, radiographic, and chemical analyses. When archeological artifacts such as floral and faunal remains, beads, shroud pins, or coffin nails were recovered, they were stabilized by conservators, recorded on individual artifact-location maps for each skeleton, and sent to the archaeological laboratory for curation and analysis.

Figure 14. OTA Joseph Jones involved in cleaning and reconstruction.

VOLUME 1, PART 1. THE SKELETAL BIOLOGY OF THE NEW YORK AFRICAN BURIAL GROUND

Whenever practical, fragmented skeletal elements were reconstructed using polyvinyl acetate (PVA) as an adhesive so that anthropological measurements, observations, and assessments would be maximized. The application of PVA was also minimal. Bone surfaces were not coated in order to reduce contamination of chemical studies and to leave the bone surface visible. After the skeletal elements of an individual were cleaned and mended, initial data collection (inventory, age, and sex estimation) was performed by the OT responsible for that burial with the advisement of the laboratory director and/or the osteologist.

Data Collection and Skeletal Assessment

An inventory of all complete and fragmented skeletal elements was conducted for each burial to ascertain the relative state of preservation for each individual and the number of skeletal elements and their aspects that could be used as "populations" for group comparative purposes. For example, a research question concerning the knee joint might refer to the number of arthritic distal anterior femora (the upper part of the knee joint) as a percentage of all observable distal anterior femora, not as a percentage of skeletons from the burial ground. Therefore, keeping careful records of the preservation status of every significant bone by aspect (proximal third, middle third, less than 25 percent present, etc.) provides an important statistical control. The inventory was conducted according to Standards for Data Collection from Human Remains (Buikstra and Ubelaker 1994), hereafter referred to as the Standards.

A skeletal inventory was taken of every observable bone and tooth with the following preservation scores:

blank = missing data

1 = greater than 75 percent present = complete

2 = 25-75 percent present = partial

3 = less than 25 percent present = poor

The preservation of vertebral bodies and neural arches were recorded separately. Long bones were given separate scores for proximal end, proximal third, middle third, distal third, and distal end. Appendix C provides an accounting of the preservation status of this archaeological sample.

An anthropometric record was compiled for each measurable cranial dimension and postcranial element whose measurements bore potentially useful information (Figure 15). Measurements were not taken if

Figure 15. Allison Davis and Keisha Hurst take anthropometric measurements.

damage, incomplete preservation, warpage, or limited reconstruction made accurate measurement improbable. Occasionally, measurements were approximated for bone elements with minimal alteration of size (as in some cases in which exfoliated cortical bone produced a 1–2 mm difference in length) and when we could estimate where a landmark had been and the degree of error involved. Any approximated measurements were specifically noted.

Measurements were taken bilaterally and in the metric system, using the following instruments as appropriate: (1) digital sliding caliper, (2) spreading caliper, (3) osteometric board, (4) measuring tape, and (5) mandibulometer.

Separate forms were used to record measurements for immature (less than 20 years old) and adult remains. All measurements for infants (defined as fetal to 3 years) were taken according to standards recommended for immature individuals. Postcranial measurements for children (3–12 years) and for adolescents (12–20 years) were recorded according to the same standards; however, when sufficiently complete, cranial and mandibular measurements were taken according to the more extensive adult anthropometric standards. Adolescent bone elements with fused

epiphyses (growth plates) were considered adult and measured as such.

Quality control was maintained by recording two sets of measurements for each skeleton, taken by different technicians or on different dates. The two sets of measurements were then compared in order to assess the degree of difference between them. When the degree of difference was greater than 5 percent of the average value of two measurements, then a third measurement was taken and compared to the previous two. This process continued until two measurements remained with a degree of difference of less than 5 percent. These two measurements were then averaged for analytical purposes. The 5 percent rule was applied as an alert to serious error. In fact, acceptable measurements were always much closer together than 5 percent of the size of the bone. We are confident of the accuracy of the final mean measurements used in our studies. The last two sets of measurements taken are available for examination as part of the permanent record of the project.

Sex Determination

Determination of sex was based on observed skeletal variations in shape and size known to differ between males and females. Each of 10 cranial, 7 pelvic, and 7 other postcranial characteristics were assigned a score on a scale of 1–5, with 1 demonstrating typical female configuration, 5 marking male morphology, and 3 being indeterminate. In most cases, a sex determination was achieved by finding the average score for all attributes. Commonly, however, skeletons with average scores denoting one sex also exhibited some characteristics indicative of the other sex. In such cases, greater weight was given to the most reliable sex determinants; these are elaborated below. When poor preservation eliminated all reliable sex indicators, sex was estimated as undetermined. Rationales for sex determination were recorded in the section reserved for comments in addition to the 24-item score sheet. Age was always a consideration when estimating sex, as many older skeletons may undergo degenerative changes, such as bone resorption or remodeling, which, if not accounted for, can complicate a sex assessment. Sex assessment in children is categorically questionable. We consider our sex assessments to be reliable for individuals who were 15-19 years of age and older. Although there are currently no widely accepted standards for determining sex in younger juveniles, a specialized study was conducted using

an experimental approach that will be included in a subsequent chapter of this report.

When sufficiently complete, the pelvis is the most reliable indicator of sex. The subpubic angle (Figure 16), the ventral arch (Phenice 1969a, 1969b), and the presence or absence of the preauricular sulcus are particularly useful. Each trait was evaluated independently according to standards delineated by Phenice (1969a), Sutherland and Suchey (1991), and others. Older adolescent individuals whose pelvic bones showed qualitatively distinct female characteristics were generally assessed as female. An adolescent pelvis exhibiting male patterns, however, was considered ambiguous, as this could have also represented a female skeleton that had not yet reached full maturity (Buikstra and Ubelaker 1994:16). Considerable additional data would be needed to establish the sex of such a person.

Though not so reliable as the os coxae, estimation of age based on cranial morphology was also very useful for sex determination, especially in cases involving typically robust or gracile features. Each trait was scored according to standards described by Bass (1971, 1987), Krogman (1962a, 1962b), and Buikstra and Ubelaker (1994). For adolescents, in the absence of convincing pelvic indicators, a robust cranium was interpreted as an indication of overall maleness, and a gracile skull often resulted in an ambiguous overall diagnosis. Older age was also a consideration when determining how much influence to assign to cranial features in an overall sex assessment, as many adult skulls of either sex may exhibit a more masculine morphology with increasing age (Meindl et al. 1985). Additionally, with tooth loss, the mandible may undergo remodeling, which can also complicate sex determination (Figure 17).

Postcranial size dimensions proved highly variable in this sample. Measurements were taken and applied using the guidelines for sex determination in Dittrick (1979) and Thieme (1957). Many of the measurements conflicted with more accurate indicators such as pelvic morphology; therefore, they were often of less value in sex estimation. Except in cases of denoting "typical" maleness or femaleness, postcranial measurements (length of long bones, for example) were usually assigned less weight in sex determination than reproductive anatomy (pelvic characteristics). Given the robusticity of many of the New York African Burial Ground females, sexual characteristics that were not heavily influenced by biomechanical factors were favored over those that were most influenced by muscularity.

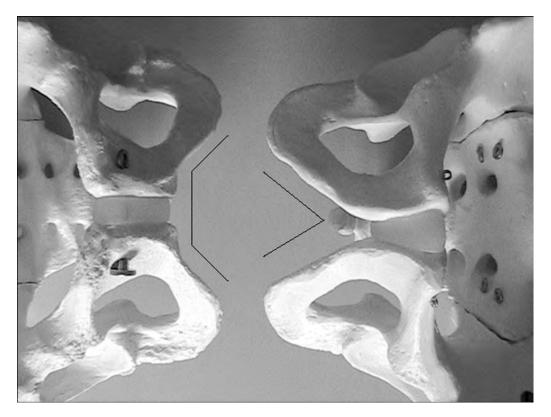


Figure 16. Comparative male and female pelvic shapes. Note the wide subpubic angle in the female (*left*) in relation to the male (*right*).

Figure 17. Geriatric left mandible for which long-standing toothlessness has obliterated most evidence of dental "sockets" (Burial 209).

Age Determination

Estimation of age at death involves the observation of numerous indicators of growth, development, and agerelated degenerative changes. The desired composite age for each individual consisted of an estimated age range and mean age (mean of age range) obtained by evaluating and weighing the age estimates derived from several different aging criteria, such as epiphyseal closure and dental attrition. The estimates of each criterion were usually based upon age scores or estimates from a variety of bones or teeth. Although efforts were made to provide a mean age and age range for each skeleton assessed, advanced age and/

Figure 18. Cranium of infant 1—2 years of age (Burial 252).

Figure 19. Child 5–7 years of age (Burial 39).

or poor preservation sometimes rendered this impossible. In such cases, only a minimal age was given (e.g., greater than 55).

When it was impossible even to calculate a minimal age, an attempt was made to assign the skeleton to one of the age classes listed in Standards: fetal (<birth), infants (birth-3 years), children (3-12 years), adolescents (12–20 years), young adults (20–35 years), middle adults (35-50 years), and old adults (50+ years). We were successful in estimating reliable upper and lower age ranges on three-quarters of the skeletal population without resorting to these general categories because of the large number of individuals (301) with wellpreserved and sufficiently complete demographic indicators. The demographic analyses of the project rely solely upon this unusually large group of accurately aged individuals. Thus, statistical analyses at times refer to first- or second-year infants and other operationally convenient age ranges other than those of the Standards (see also pages 83–84 in this chapter).

For immature remains, composite age was determined by evaluating dental development, epiphyseal and primary ossification center fusion, and long-bone diaphyseal length. When possible, tympanic plate development was also evaluated for infants. Because of its high variability, long-bone diaphyseal length and iliac width were used as a primary age indicator only when no other elements were sufficiently preserved. Dental development, being little influenced by environmental factors, is the most accurate indicator of subadult age (Figures 18 and 19). Dental development was evaluated according to sequences of tooth formation and eruption (Figures 20 and 21) compiled by

Ubelaker (1986, 1989), Gustafson and Koch (1974), and Moorrees et al. (1963a, 1963b). Up to 75 different developmental indicators were evaluated in estimates of the ages of immature individuals. Of these indicators, 32 were observations of epiphyseal union and primary centers of ossification. Each of these was scored in three stages that include nonunion, partial union, and complete union of the epiphyses and metaphyses of bones; these stages correspond to different developmental ages.

Degree of fusion for epiphyses and primary centers of ossification was also a valuable age indicator (Figures 22 and 23), yet there were a number of cases in which ages reached by assessing union were inconsistent with those determined by observing dental development. When this occurred, greater weight was given to dental development because of the greater environmental influences on bone growth and development. Fusion of primary ossification centers was evaluated for the vertebrae, os coxae, and the basilar portions of the occipital bones. Epiphyseal union was assessed for long-bone epiphyses, clavicles, and scapulae. For older adolescents, degrees of fusion were also assessed for bones of the hands and feet.

For adults, age at death was estimated by evaluating age-related degenerative changes on the pubic symphysis and auricular surfaces of the os coxae (Lovejoy et al. 1985), cranial sutures (Meindl and Lovejoy 1985), and sternal rib ends (I s, can et al. 1984a), and dental attrition (Figure 24). Osteoarthritic changes (eburnation, erosion, lipping, and various manifestations of osteophytosis) were also assessed for vertebrae and for the articular surfaces of various long bones. Late-

Figure 20. Mandible of 9–10-year-old child with permanent teeth in various stages of eruption compared with a dental aging chart (Ubelaker 1989) showing ages associated with different eruption stages.

Figure 22. Unfused epiphysis comprising the immature head of the femur of a 3–5-year-old (Burial 138).

fusing skeletal elements, such as the sacral vertebrae, basilar synchondrosis, and the medial epiphysis of the clavicle, were also useful for distinguishing young adults from older remains, although there were a few cases in which skeletons that demonstrated advanced age-related changes in other features had incompletely fused sacral vertebrae. Delayed development of this kind, when not consistent with several other reliable age indicators, was considered an anomaly and was noted but discounted for age estimation. Evidence of delayed development has been considered however, in relation to load-bearing and other stressors that might reasonably have interfered with the development of

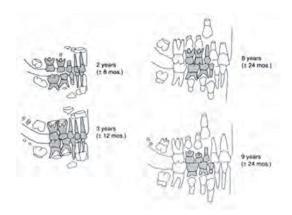


Figure 21. Deciduous teeth are shown in gray; permanent teeth are shown in white. Note the 9-year-old's development in lower right-hand corner.

Figure 23. Unfused epiphysis of a juvenile distal femur compared to a fully fused adult epiphysis.

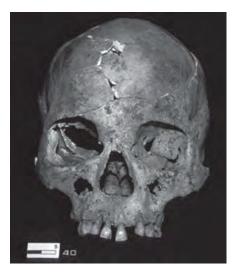
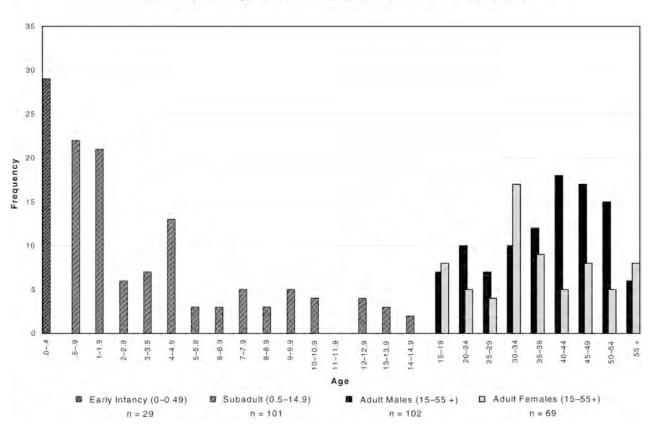


Figure 24. Elderly woman 50–60 years of age (Burial 40).


Figure 25. Pubic symphysis of a 45–50-year-old male (Burial 20, *left*) and Todd's 10 typical phases of age in the pubic symphysis.

particular bones. The potentially high skeletal stress of forced labor may also have brought about premature degeneration of the bones of the spine and true joints relative to chronological age. We believe that a conservative and reasonable accounting was given to each of these considerations.

The auricular surfaces of the ox coxae were more frequently preserved than pubic symphyseal surfaces. Age-related changes in auricular surfaces were evaluated in accordance with phases delineated by Lovejoy et al. (1985). Changes in the morphology of pubic symphyseal faces were documented by comparison with standard casts according to Todd (1921a, 1921b) and with consideration of methodological issues raised by Brooks and Suchey (1990) and Katz and Suchey (1986, 1989) (Figure 25). For both the auricular surface and the pubic symphysis, differences between the left and right sides were noted and recorded. Sternal rib change was evaluated according to phases defined by İşcan et al. (1984), and osteoarthritic variation was scored based on standards devised by Stewart (1958).

Various degrees of cranial suture closure were evaluated according to the scoring system devised by Meindl and Lovejoy (1985). When possible, suture closure was scored bilaterally because asymmetry in fusion rates was noted frequently. We were pleased to find that, although the age ranges estimated by this method tended to be very widely distributed, the mean age based on suture closure tended to be consistent with those of other aging methods. This method is clearly superior to earlier aging methods using this criterion. A maximum of 65 degenerative indicators of aging were scored for each individual.

After all available indicators had been evaluated, a composite age range and mean were determined. When ages ascertained from various features clustered tightly (usually within 6–24 months for subadults and within 5–10 years for well-preserved adult skeletons), every indicator was included in the composite age range, defining the low and high possible ages for the individual. In some cases, however, the age range estimated from perhaps one criterion differed widely from the others. This was usually cranial suture closure, according to the method of Meindl and Lovejoy (1985), which produced unusually broad age ranges but whose medians were very consistent with those of other methods. When this occurred, more weight was given to indicators that rendered ages that clustered than to outlier ages, such as cranial-suture agerange scores. Such outliers were recorded but did not become part of the composite age. A mean of the resulting composite age has been used for all analyses for ease of statistical manipulation. Wider age ranges, however, are especially useful when considering an individual skeleton because it will describe the likely error, the possible ages of that person at his or her death. Such broad age ranges are used in the descriptions of individual skeletons in Part 2 of this volume, Burial Descriptions and Appendices, and in Volume 2, Part 2 of this series, The Archaeology of the New York African Burial Ground, Part 2: Descriptions of Burials (Perry et. al. 2009b). When samples or groups of individuals are evaluated, especially the sizable archaeological population reported here, the single, average age for each individual becomes an adequate operational summary of their ages for statistical manipulation. Having many individuals within each analytical cell or field (such as the 5- or 1-year age categories we have used) means that they will represent the range of error (randomly biased above and below the true age) by virtue of the diversity and number of individual age estimates that, when large,

Mortality Among the New York African Burial Ground Population

Figure 26: Bar graph representing sex and age at death using average ages for the 301 individuals observable for age and/or sex.

begin to approach theoretical probability in which the biases cancel each other. In other words, the errors of bias are reduced in statistical treatments of groups by having sizable numbers of age-estimated individuals whose biased ages will be randomly too low for some and too high in others. Because these random, but small, errors in each direction will cancel each other out, the narrow age range in which their means fall (the 1- or 5-year interval around their mean ages in the histogram in (Figure 26) constitutes a reasonable operational summary age for the age group in question. One solution to the problem of smaller archaeological populations is to use very broad age groupings to accommodate the random errors of small populations/sample sizes so that one is reasonably certain an individual lies within the category of say, adult or infant. We believe that our sample was sufficiently large and the data set was extensive enough to use 1-year-age intervals for the demographic analysis of subadults whose developmental ages were the most accurately assessed and 5-year intervals for adults under 55 years of age. The idiosyncrasies of skeletal

variation in older individuals are too great for a more reliable age estimate than 55 and older.

Dental Assessment

After the skeletal remains of each burial were cleaned and reconstructed, the dentition for each burial (permanent and/or deciduous) was cleaned, identified, assessed, and curated separately by the laboratory director and his assistants (Figure 27). Data collection was performed under the guidelines set forth in Standards and the Arizona State University Dental Anthropology System, under the methodological considerations of Goodman and Rose (1990), Blakey and Armelagos (1985), Rose et al. (1985), Rudney et al. (1983), Scott (1979), Smith (1984), and others. Recordation for the deciduous and/or permanent teeth included dental inventory, measurements, morphological traits, attrition rates, enamel defects, culturally induced alterations, and pathological observations (Table 1). A complete photographic record was constructed for each tooth, the overall dentition, and the

Figure 27. Laboratory Director Mark Mack conducts dental recordation.

maxillary and mandibular alveoli. If all teeth were present, we made a maximum of 96 measurements and 231 coded observations of morphology and developmental pathology. We also made numerous additional descriptive assessments of dental pathology.

Assessment of Bone Pathology

An experienced osteologist and an OT, with assistance of an OTA, in consultation with the scientific director, assessed each set of skeletal remains for pathologies, anomalies, and nonmetric genetic traits in bone. For consistency, the same osteologist carried out most of these assessments. Where staffing changes were made for pathology assessment and coding, care was taken by the scientific director to establish comparability among researchers. Assessment methods included the descriptive classifications of abnormality of shape, abnormality of size, abnormal bone loss, abnormal bone formation, fractures and dislocations, porotic hyperostosis, vertebral pathology, arthritis, and epigenetic traits used in the Standards. More specific descriptive subcategories of the Standards and traditional diagnostic interpretations (such as "meningitis," which is not included in the Standards) were included in these assessments. Pathology assessments were made as narrative descriptions as per earlier approaches than the Standards (such as the Paleopathology Association's guidelines for assessment) but with the Standard's coding method in mind. The project's use of "slight" versus "moderate to "severe" degrees of pathology, for example, is equivalent to the use of the Standards' categories of "barely discernable" and "clearly present," respectively (Figures 28 and 29). Having begun this research while Standards were still in development, we had the benefit of our colleagues' generous provision of the early manuscripts, and we developed an approach that bridged (and included) the traditional diagnostic and new, more descriptive methodologies. Chapter 10 addresses the pathology codes in greater detail.

Subsequently, an OT coded these descriptions with input from the scientific director and associate director for biological anthropology. The project's own coding method utilized a spreadsheet format that encompassed virtually all useful information of the Standards' coding scheme in one-third of the time required to use the latter code. As one of the first projects to test the Standards, we consider our approach to coding to be advisable because difficulties in coding have often been noted by those attempting to use the new protocol. Additionally, we compiled a complete photographic record of all pathologies by continuous consultation between the photographers and osteological staff. Detailed descriptions of pathologies can be found in subsequent chapters of this report. The project's database contains approximately 12,000 coded pathologies observed in the New York African Burial Ground population.

A photographer trained and experienced in the photographic documentation of skeletal remains was enlisted to carry out this task with the assistance of one OTA (Figure 30). The skeletal remains were photographed from a number of orientations to fully document each bone that contained information, as called for by the *Standards*. Photographic documentation was essential because the remains were to be reburied, and photographs would provide the only visual evidence for future researchers. OTs and OTAs contributed to photography as their experience increased over the life of the project. Photographs were later digitized at the Institute for Historical Biology at the College of William and Mary and the Cobb Laboratory.

Additionally, as a means of documentation, radiographs were taken of useful crania and long bones to discover pathologies that were not readily apparent by

Table 1. Codes for Dental Morphology and Dental Measurement

Code No.	Description
15	Tooth missing.
16	Not fully erupted; prevents measurement.
17	Calculus prevents observation.
18	Carries damage prevents measurement/scoring.
19	Crown missing or broken off.
20	Enamel wear; attrition prevents scoring.
21	Root unobservable (tooth in occlusion).
22	Postmortem enamel damage; prevents measurement.
23	Incomplete crown formation prevents measurement.
24	Tooth in occlusion, in pedestal, prevents measurement.
25	Tooth not in occlusion, prevents scoring.
26	Dental modification prevents measurement.
27	Pipe notch prevents measurement/scoring.
28	Filling, prevents measurement/scoring.
29	Scored only in the absence of Cusp 6.
30	18, 20
31	22, 26
32	17, 22
33	20, 22
34	22, 28
35	Incomplete root formation.
36	CEJ damaged, prevents measurement.
37	Root damage, prevents measurement/scoring.
38	Peg incisor (used only when scoring shoveling trait and peg incisor involved).
39	Enamel defects prevent measurement/scoring.
40	Traumatic fracture; prevents measurement/scoring.
41	Root fusion; prevents measurement/scoring.
50	Entire tooth surface affected by enamel defect.
51	Occlusal surface of incomplete crown affected by enamel defect.
52	Coronal surface of incomplete crown affected by enamel defect.
53	Enamel defect present but can't be measured.

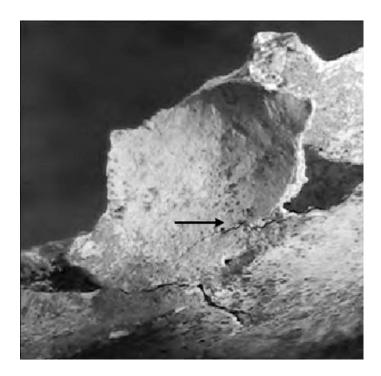


Figure 28. Barely discernable porotic hyperostosis.

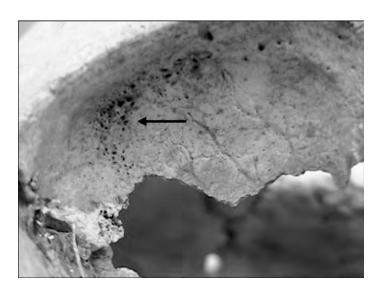


Figure 29. Clearly present porotic hyperostosis.

visual observation. Inventory radiographs made by the Department of Radiology at Howard University Hospital and by the Department of Orthopedics and the College of Dentistry at Howard University utilized X-ray settings recommended by the *Standards*. Specialized radiographs made with a portable machine at the Cobb Laboratory provided immediate images that aided in the assessments of age and traumatic fracture.

Sectioned Bone Samples

Samples of right femora, humeri, fibulae, and ribs were taken according to the *Standards* protocol for sectioning. Sectioning was done after all other work was completed. Bone and dental tissue samples are to be used for histology, chemistry, DNA, histomorphometry, and curation. DNA samples (from the right

Figure 30. Photographer Jerome Otto Edwards and Osteologist M. Cassandra Hill photographing cranium.

fibulae) were cut using a clean bench with reverse airflow, and handsaws were bathed in ethanol and chlorine to remove all proteins between cuts in order to eliminate interindividual DNA contamination (mixing). Gloves and dust masks were worn at all times. All other samples were obtained with a band saw, using steel mesh gloves for personnel safety. A total of 8 cm of bone was removed from each skeleton when possible. Appendix B contains an example of a file for a well-preserved adult (Burial 101), showing the specific methods or observations mentioned in this chapter.

The New York African Burial Ground sample database is too large to be rendered as tables in this volume and is to be made available in electronic media.

Skeletal Curation

After photography and radiography, the bones from each individual were carefully stored in airtight metal cabinets under the controlled conditions described in the previous chapter of this report. The skeletal remains were routinely monitored, and we took curation and protection of these ancestral remains as an important, traditional, custodial duty. Public care for the remains has taken other forms including religious observances. Provision was made for a shrine at the laboratory entrance that has been kept by Ife (Yoruba) cultural practitioners (Figure 31). All skeletal remains were reburied as part of the Rites of Ancestral Return ceremonies in October 2003.

Figure 31. African American Ife Shrine in the Cobb Laboratory.

Section II:

Origins and Arrival of Africans in Colonial New York

CHAPTER 5

Origins of the New York African Burial Ground Population: Biological Evidence of Geographical and Macroethnic Affiliations Using Craniometrics, Dental Morphology, and Preliminary Genetic Analyses

F. L. C. Jackson, A. Mayes, M. E. Mack, A. Froment, S. O. Y. Keita, R. A. Kittles, M. George, K. J. Shujaa, M. L. Blakey, and L. M. Rankin-Hill

Introduction and Theoretical Perspectives

Origins are central to understanding the past and present identity of a people. Origin studies provide, under optimal conditions, a context for all other assessments, such as archaeological, biomedical, and nutritional evaluations. Characterizing the phenotypic status and determining the origins of the eighteenth-century New York African population and those individuals interred in the New York African Burial Ground were among the project's major goals. Toward that end, our craniometric, dental morphology, and genetic teams collaborated extensively with project historians and archaeologists to develop a biocultural, interdisciplinary research strategy for a historically and ethnographically informed interpretation of the ancestral origins of the people disinterred from the New York African Burial Ground. Our research strategy addressed the inquiries of the descendant African American community with the professional scientific rigor demanded by our disciplines.

At this point in our investigations, the craniometric and dental morphology data are the most complete and well-developed lines of evidence for establishing relationships between the New York African Burial Ground individuals and other world groups. Craniometric evaluations for the purpose of determining ancestral origins have been applied to anthropological populations for a very long time and have a rich history. Classically, such studies were focused on typological racial assessments. This was not the case in the studies by Froment and Keita and Shujaa discussed within this chapter that quantified craniometrical diversity and then compared this variability with a broad range of historical-period and modern African and non-African groups. Dental morphology studies are a well-established basis for assessing presumable genetic relationships between skeletal populations. This chapter contains a dental morphology study by Mayes and Mack that addresses the biological diversity in dentition observed among the New York African Burial Ground individuals and the historical population affiliations associated with this variability. Both the craniometric and dental morphology studies confirm the African regional backgrounds of the New York population and probe the current limits for establishing greater ethnic specificity using such traditional methodology and comparative statistics.

Molecular genetic assessment, our third approach to determining ancestral origins, is a rapidly emerging and extremely precise set of techniques used to match individuals with specific geographical regional groups, often with a high degree of reliability. Preliminary genetic studies by George and Kittles suggest that, based upon DNA analysis, much of the genetic diversity characterizing a subsample of New York African Burial Ground individuals was decidedly West and Central African in origin. In a few cases, these preliminary results localized specific individuals to precise geographical regions of West and Central Africa and suggested macroethnic affiliations. These preliminary studies, which focused on a subset of the New York African Burial Ground individuals, clearly point to the feasibility and utility of continued research in this area. Jackson's initial work provides a road map for these future studies.

Database Limitations, Research Strategies, and Historical and Evolutionary Contexts

Despite this focus, all four bioanthropological lines of evidence—dental morphology, nonmetric phenotypic traits, craniometrics, and molecular genetics encountered problems in the comparative analysis of the data. The most significant problem encountered was the dearth of appropriate, nonracialized studies of African, Native American, and European population biology diversity for comparative assessments with the individuals of the New York African Burial Ground. Of particular note is the continued paucity of data on intra-African diversity. For example, substantive nonmetric-trait studies that include African populations are not available in the published literature. This important limitation in the database is being partially addressed at a number of levels, including the development, in 2002, of the first human DNA bank in Africa by Jackson, Mbah, and colleagues. The aim of this project, as a direct response to the needs of the New York African Burial Ground analyses, is to have a full representation of—and public access to—continental-African molecular genetic diversity that can be linked to geographical region, ecological setting, national identity, and ethnicity. Similar efforts are underway to characterize the genetic diversity among East Coast Native American groups (David Glenn Smith, personal communication 2003).

Another limitation of our sample for broader extrapolations is that the Africans and African Americans enslaved in New York represent a distinct minority of North American captives. In 1790, there were nearly half a million Africans and African Americans enslaved in the United States. Of these 491,157 individuals, only 21,193 (approximately 4.3 percent of all enslaved persons) resided in New York State. The

majority of these individuals were in New York City. Therefore, the representativeness of this subset of North America's enslaved population is likely problematic. The origins of the New York African Burial Ground individuals may not reflect the origins of enslaved Africans elsewhere in the Americas.

A third limitation in extrapolating results from our studies was the size of the subset of retrieved individuals from the New York African Burial Ground. The approximately 400 individuals retrieved from an estimated 15,000 of those interred represent less than 3 percent of the estimated total number of buried individuals. The representativeness of this subset for all of New York City's enslaved persons is likely problematic. The retrieved individuals came from a limited area of the actual burial ground and may represent a clustering of genetically related and/or phenotypically affiliated individuals. Indeed, a preliminary analysis of mitochondrial DNA (mtDNA) based interrelationship in a small group of interred individuals suggests close maternal affiliations between particular burials. Additional genetic tests based on Y chromosome haplotypes and autosomal genes are warranted to further illuminate the genetic interrelationships of the individuals recovered from the New York African Burial Ground; along with molecular sex determinations of all individuals.

Finally, for a number of historical and evolutionary reasons, it was very difficult to reconstruct the exact modern or historical African ethnic group(s) to which a specific New York African Burial Ground individual belonged, because New World Africans (including African Americans) are highly heterogeneous and represent an amalgamation of genes from diverse African ethnic groups in addition to highly variable genetic contributions from non-Africans, primarily Europeans and Native Americans. Many of the European slaving vessels picked up shipments of captive Africans from various points on the coasts of Africa. In gathering captives in this manner, the vast majority of shipments contained a rainbow of ethnicities that eventually found their way to the docks, households, and plantation work sites of the Americas. This created a plethora of African ethnicities with maximal opportunities for gene flow between individuals that had, on the continent of Africa, remained distinct. On the small island of Dominica alone, there were captives from diverse areas in Africa, such as Old and New Calabar, Gambia, Cape Mount, Angola, Bonny, Cameroon, and Anamaboo (Selwyn H. H. Carrington, personal communication 2002). These names only refer to the regions from which the Africans were acquired for shipment, not their specific ethnic groups. A similar scenario was anticipated for New Amsterdam/New York City, thus complicating the efforts to link specific New York African Burial Ground individuals to particular African ethnic groups. As the specificity of the African databases improves, we should be able to detail regional and macroethnic levels of genetic nuance. Indeed, our preliminary molecular genetic studies have already allowed this level of sophisticated assessment.

The Atlantic trade in 10–50 million enslaved Africans and the interactions of the survivors and their descendants in the Americas provide the ancestral foundations for the individuals interred in the New York African Burial Ground. Both the geographical extensiveness of the trade in enslaved Africans, often deep into the interior of the continent, and the diversity of their interactions with each other and with non-Africans (Europeans and Native Americans) warrant that a broad array of regional groups be included for origin-reconstruction studies. This is reflected in the research strategies implemented for the craniometric, dental morphology, and molecular genetic components of our study; comparisons were made with available African, Native American, and European groups. However, the dominant African origins of New York African Burial Ground individuals became evident early in our analyses. Once the primacy of African origins was obvious from craniometric, dental, and molecular genetic data, we sought to further refine our studies to identify where in Africa these individuals may have had their strongest ancestral ties.

The historical record indicates 10 major geographical regions as sites from which enslaved Africans were likely exported to New Amsterdam/New York during the time frame of the New York African Burial Ground (Figures 32 and 33). Additionally, the origin, number, initial entry points, and subsequent reexportation routes of enslaved Africans to the Americas (e.g., Caribbean trade to New York) have been identified (see Volume 3 of this series, *Historical Perspectives of the* African Burial Ground, Chapters 2, 6, and 7). These historical data help us better understand the potential for genetic and phenotypic variations among the New York African Burial Ground individuals, based upon the likelihood of gene flow among previously diverse Africans, gene flow with non-Africans, possibilities of genetic drift and bottleneck effects, and various types of selection at particular points in the historical record. The historical information also suggests the ethnic and regional identities of potential reference ancestral groups (specific groups of Native Americans that may have biologically interacted with the Africans of New York), as well as the characteristics of the data banks (e.g., distinctive morphological traits) necessary to ascertain the origins of New York Africans interred in the New York African Burial Ground.

The larger context for reconstructing the origins of the New York African Burial Ground individuals is within the current paradigm of modern human origins. The available molecular and skeletal information on recent human evolution favors a recent African origin of modern humans who spread out of Africa approximately 100,000-200,000 years ago (Ayala and Escalante 1996). In this context then, non-African diversity represents a subset of African heterogeneity, complicating somewhat our search for continental and population-specific phenotypic and genotypic markers. However, for all of the useful polymorphic traits studied, African levels of diversity have exceeded those observed in non-Africans, and much of the African diversity appears to be clustered geographically and/or ethnically. Theoretically, this implies that genetic and phenotypic assessments of the New York African Burial Ground individuals should be able to identify whether they are of predominantly African or non-African origin, and, if they are African, with which regions of the continent they share ancestral affinities. Furthermore, existing craniometric, dental morphology, and molecular genetic variation allow us to characterize these individuals in relation to themselves and to address questions of kinship within the group.

Research Questions

The four major questions to be addressed in using genetics and phenotype to reconstruct the ancestral origins of the New York African Burial Ground population are:

- 1. Is it possible to differentiate between continental groups (Africans, Europeans, and Native Americans as a subset of Asians) at the genetic and/or phenotypic levels?
- 2. In the New York African Burial Ground sample, is it possible to differentiate genetically and/or phenotypically among the ancestral Africans, ancestral Europeans, and ancestral Native Americans coming from various historically relevant geographical areas and germane ethnic groups within a specific continent?

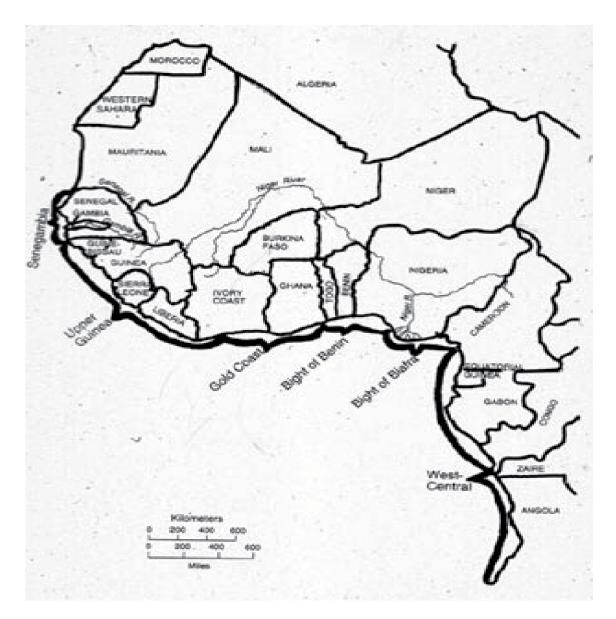


Figure 32. Major African exit points for enslaved individuals bound for New York in the seventeenth and eighteenth century. Additional exit points (not shown) include Mozambique and western Madagascar as well as the Atlantic islands off of West Africa (e.g., Cape Verde).

- 3. Is it possible to differentiate sex-linked differences in ancestral origins and biological affinity among those interred in the New York African Burial Ground?
- 4. Most importantly, is it possible to differentiate among the Africans, who most likely contributed disproportionately to the ancestral backgrounds of those interred in the New York African Burial Ground, from various regions of Africa and between different macroethnic groups of Africa?

In other words, we are especially interested in the complex relationships of this sample population to each other and to the larger world. These distinct but complementary levels of assessment are critical for ascertaining the origins of those interred in the New York African Burial Ground and for refining existing databases for future genetics studies of the origins of the people of the African Diaspora. The New York African Burial Ground Project research team has begun to notably contribute to the existing databases.

Research Background Synopsis

The importance of integrating phenotypic and genotypic variation in our assessments of biological lineage and ancestral origins is evident from the wealth of such studies in the published literature. There is considerable variation between and within populations

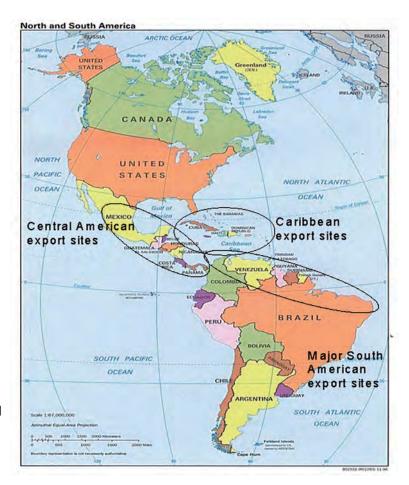


Figure 33. Exit regions for enslaved Africans bound for New York, Central and South America, and the Caribbean in the seventeenth and eighteenth centuries.

(e.g., with regard to such traits as tooth size, congenitally missing teeth, crown morphology, mtDNA haplogroups, etc.). These differences are a reflection of the ongoing process of evolution and can be used to accurately reconstruct ancestral origins in specific populations when contextualized by an appropriate understanding of history and the environment.

Craniometric Assessments

Assessments of craniometric variation from Africa, Europe, and Asia basically support the dominant African-centered genetic and archaeological models of human origins and microevolution (Relethford and Jorde 1999). The average heterozygosity is significantly higher among Africans indigenous to the sub-Saharan areas of the continent than among non-Africans. An early study (Relethford and Harpending 1994) of worldwide variation in within-group phenotypic variation used a large set of craniometric data that represented major Old World geographic regions. The study included 57 measurements for 1,159 cases in four regions: Europe, sub-Saharan Africa, Austral-

asia, and the Far East. Relethford and Harpending predicted a linear relationship between variation within populations (the average within-group variance) and variation between populations (the genetic distance of populations to pooled phenotypic means). If this prediction continues to hold true, craniometric data should also facilitate testing our hypothesis about the ancestral origins of individuals retrieved from the New York African Burial Ground.

Dental-Trait Variants

The study of teeth has historically been an informative means of demonstrating patterns of human dispersals (Shields 1999). The multivariate analysis of worldwide dental-phenotype microevolution suggests that world patterns are also broadly in accord with the dominant interpretation of genetic, archaeological, and other dental data. Like these data, dental morphology suggests an African (i.e., San, West Africa, and Bantu) origin and subsequent dispersal for extant humanity. According to a prevailing interpretation of dental-trait variation, the first modern-human African

emigrants who did not become extinct were Southeast Asian Negritos. All Eurasians then emerged and expanded through a series of now extinct antecedent populations branching from the short lineage extending from Negritos to Australian aborigines. Proto-Europeans were the first group to fission from this lineage. Under this dental-morphology-generated hypothesis of modern-human origins and subsequent differentiation, the next groups to have emerged were antecedent Southeast Asians, from which present Southeast Asians and then antecedent east Central Asians then diverged. Independently, people from the region of Mongolia and all Native Americans arose as daughter populations from antecedent East Central Asians (Shields 1999). Given this scenario, we should be able to find dental variants that distinguish between various continental groups of contemporary humans as well as high dental-morphology diversity within Africa.

Fortunately, the study of European genetic diversity has been quite extensive, and the characterizations of the relevant groups for our intracontinental comparisons are more advanced. Of greatest relevance to our testing of the second research question is evidence of genetic and phenotypic diversity among the Dutch, Spaniards, Portuguese, English, Scots, Irish, French, Danes, and Germans because these groups were the most active in the transatlantic trade in enslaved Africans and/or maintained the greatest potential (based on proximity) for contributing to the gene pool of the New York population.

Molecular Genetics

Applied genetics is of increasing relevance in our efforts to reconstruct the origins of long-deceased populations. New methods, new techniques, and the increased ease with which sophisticated assessments can be made have provided new ways of knowing the long-buried histories of individuals and, by extension, their groups. In a recent article, senior geneticists Cavalli-Sforza and Feldman (2002) noted that the past decade of advances in molecular genetic technology has heralded a new era for all evolutionary studies but especially the science of human evolution. Data on various kinds of DNA variation in human populations are rapidly accumulating, particularly markers from mtDNA and the Y chromosome. The evolution of the human mitochondrial genome is characterized by the emergence of geographically distinct lineages or haplogroups. Significant differences between the three African, nine European, and seven Asian (including Native American) haplogroups make it now possible to confirm or reject an African genetic origin from studies using mtDNA. Indeed, the analysis of nucleotide sequences of the D-loop of mtDNA derived from the aDNA of a small sample of New York African Burial Ground individuals has been very informative in confirming the continental origin (Africa) and in its subsequent elaboration of the geographical region, within-continent identities of nearly 50 New York African Burial Ground individuals.

Methods, Data, and Results

Craniometrics

The scope of the present study is not about human variation in general and therefore does not include populations from all around the world; the issue was to assess the origins of the people buried at the burial ground as they represent the New York African community of the time. These origins combine three roots:

- 1. The geographical origin in Africa (according to the historical analysis, the primary sources of the enslaved population was from Central and Western Africa, with minor Madagascan and Southern African components)
- 2. Some admixture with the European colonists in America and traders in Africa
- 3. Some admixture with Native Americans

To undertake such a comparative study, it was necessary to first build a reference collection of European, African, and Native American populations, ideally of the same period (ca. 1650–1769). Two decisions were made: (1) we would consider only adults, and (2) we would limit comparisons to skull measurements. The first decision was based on the fact that there are virtually no studies on subadult skeletons, due to the underrepresentation of subadults in cemetery populations (because of preservation and/or cultural processes); the disarticulated nature of subadult crania; and the difficulty in determining sex until late adolescence (unless performing DNA testing).

The second decision, to study only crania, was based on the status of this type of research and not the potential utility of the postcranial skeleton for assessing ecological variation. Unfortunately, most skeletal biological research concerning anatomical variation focuses on stature, race, and sex assessments, whereas the primary research on anatomical varia-

tion has been developed within human adaptability research on living populations. These data have not been correlated with skeletal analyses. Therefore, the cranial element of the human skeleton remains the most-studied element for comparative analysis and is still highly racialized.

A literature review for intercontinental and intracontinental crania variation was undertaken. The literature review revealed that there was a paucity of individual-level data, and sample variation was reported primarily by means and standard deviations only. In addition, only limited standardized measurements (usually 6–15) have been published, resulting in a loss of biologically relevant information. In this study, no reference to any "racial" definition was made, as the multivariate analysis does not require it, and the scatter plots speak for themselves to express the resemblance between individuals, without the use of closed biological categories. Table 2 identifies the populations used in this study and the sources from which they came.

Statistical Analysis

A stepwise discriminant function analysis was undertaken using the statistical software package Statistical Package for Social Sciences (SPSS). The purpose of the analysis was to classify a series of unknown origin objects, the New York African Burial Ground skulls, into groups defined on a geographical basis by simultaneously using multiple variables (cranial measurements). A preliminary, univariate statistical analysis verified that the variables studied display a normal distribution. Then canonical discriminant functions were generated, each function expressing a part of the total variance and displaying, more or less, an important correlation with some of the discriminating variables. We calculated distances between individuals and plotted crania in a hyperspace of the same dimension as the number of variables considered. The Mahalanobis metric, a generalized Euclidean metric, was employed to measure the distance between two points in this hyperspace because it adequately accounts for correlated variables.

Associated with each group in a sample is a point called the group centroid; this represents the means for all variables in the hyperspace defined by variables in the model. A case is said to belong to a group if the Mahalanobis distance of the case from the group's centroid is smaller than the Mahalanobis distance from any other group's centroid.

The number of variables included for analysis must be smaller than the size of the sample; this condition was met in this study. The number of individuals in each subsample (n = 20-28) was greater than the number of variables, which varied from 5 to 12 based on the completeness of the crania. When a cranium was incomplete, the number of variables was reduced; we did not attempt to replace any missing measurement by an estimate. An individual with a missing variable was excluded from the analysis, thus explaining the variation in sample size. Therefore, the strategy was to maximize the number of individuals without minimizing the number of variables for analysis.

Results

Although the New York sample was heterogeneous craniometrically, this analysis indicates that a majority of New York African Burial Ground individuals can be considered African. Four individuals (n = 20–28 complete skulls) were closer to Europeans than to Africans, yet they were within the overlapping ranges of both geographic populations (Figure 34). Because the greater proportion of West and Central African crania clustered closely, they are not distinguishable. Most New York African Burial Ground crania were clearly primarily Central and West African, although four to five individuals were within the range of South Africa.

When comparing the New York African Burial Ground sample with a sample from a Guadeloupe, French West Indies, cemetery that had only enslaved Africans, both the New York African Burial Ground and Guadeloupe samples clustered with Africans (Figure 35). The Native American component in the New York African Burial Ground sample could not be definitively confirmed; in fact, only one individual plotted close to a Native American, and both of these individuals were in the overlapping range with Europeans (see Figure 35).

In any world population, there is considerable individual variation. In a sample of heterogeneous origin, such as the New York African Burial Ground sample, variation is even greater. Yet this analysis demonstrates that those individuals interred in the burial ground were of African origin; what this analysis cannot do is to identify the specific geographic areas narrowly, nor can it identify specific African ethnic groups. Based on adaptation and ecological theory and other lines of evidence, this should be possible, but only substantive, relevant reference populations

Table 2. Population Sources for Craniometric Analysis by Froment

Population	No. of Individuals	Reference
New York African Burial Ground	59	present study
Europe		
City of Lyon (France)	271	Buyle-Bodin 1982
Valais (Switzerland)	785	Pittard 1911
City of Firenze (Italy)	131	Florence Museum collection
Norse (Norway)	110	Howells 1989
Grodek, Poland, thirteenth to seventeenth centuries	264	Belniak et al. 1961
West Africa		
Ashanti (and other Ghanaians)	114	Shrubsall 1899a
Ibo and Calabar area (Nigeria)	71	in Ribot 2002
Senegal (Seerer and Iron Age)	96	in Ribot 2002
Dogon (Mali)	127	Howells 1989
Tellem (early Mali)	134	
Togo and Benin	22	in Ribot 2002
Central Africa		
Cameroon (mainly Grassfields)	133	Drontschilow 1913
BaSuku D.R.Congo	155	in Ribot 2002
Various D.R.Congo (Zande, Kongo)	68	in Ribot 2002
Tetela, D.R.C.	82	Benington 1912
Bantu from Gabon	141	Benington 1912
South Africa		
Zulu	125	Howells 1989; Shrubsall 1899b
Nguni	27	in Ribot 2002
Xhosa	48	in Ribot 2002
Various Bantu South Africa	19	in Ribot 2002
Ovambo	36	Hrdlička 1928b
East Africa (just for comparison)		
Dschagga Kilimandjaro	30	Wide 1896
Teita (Kenya)	29	Kitson 1931
Native Americans		
Algonquin (mainly Virginia)	111	Hrdlička 1927b
Connecticut, Delaware, Maine	53	Hrdlička 1927b
Huron	24	Hrdlička 1927b
Massachusetts	41	Hrdlička 1927b
Manhattan, Long Island, Rhode Island	115	Hrdlička 1927b
Central California	120	Breschini and Haversat 1980
Labrador "Indians"	89	Stewart 1939b
Guadeloupe slave cemetery (French West Indies)	43	Patrice Courtaud, personal communication 2002; Courtaud 1999

Note: The study by Ribot (2002) is a large compilation of available literature, where complete references can be found; many series have been measured by Ribot, M. Lahr, or G. Thilmans; unpublished studies by Froment have also been included.

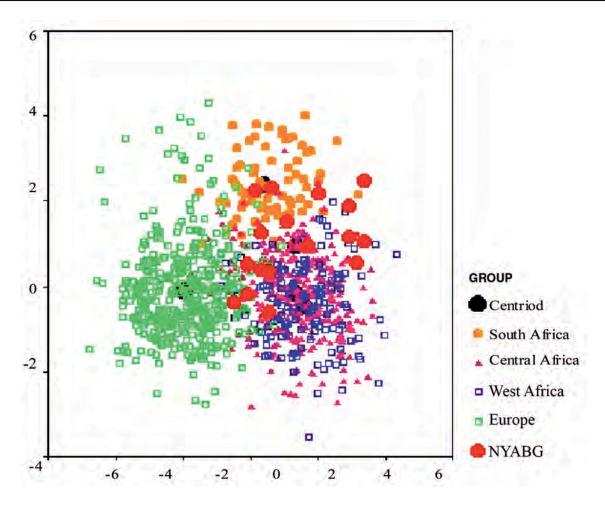


Figure 34. New York African Burial Ground skull shape analysis (Mahalanobis Distance): New York African Burial Ground population (red dots) compared to Southern and Northern Europe (green squares, n = 357), West Africa (blue squares, n = 115), Central Africa (pink triangles, n = 342), South Africa (brown dots, n = 59). Centroids are in black.

would provide a means to test hypotheses and undertake these analyses.

In another craniometric analysis, Keita and Shujaa used exclusively male crania to assess population affinities using the requirement of at least 10 measurements per skull; they used male crania because more of these were intact or sufficiently reconstructed (n = 26 with at least 10 standard measurements) than female crania for the required sex-specific analysis. These crania were from burials distributed across the site. The comparative material was from Howells's (1973) study (Table 3), measurements of crania from Gabon taken by Keita, and crania measured by Shujaa at the American Museum of Natural History (AMNH) for the New York African Burial Ground Project researchers (see Table 3).

Ten craniometric variables were taken: maximum breadth, biauricular breadth, basion-bregma, height,

maximum length, upper facial height, nasal breadth, nasal height, bizygomatic breadth, basion-prosthion length, and basion-nasion length. Using the SPSS, the New York African Burial Ground cranial series was analyzed with the others using canonical discriminant functions (see Table 3). The centroid values place the New York crania nearest the series from the Akan-speaking Ashanti (Asante) and Gold Coast series of the AMNH, which form the modern nation of Ghana. Statistical proximity to populations that are historically unlikely to have had an opportunity to contribute genes to the New York population may exhibit morphological similarity that is unrelated to any close lineage affiliations. Thus, Gold Coast individuals may be considered relevant candidates for a parental population to the New York African Burial Ground individuals, but others, such as the Tolai of New Guinea, are historically implausible.

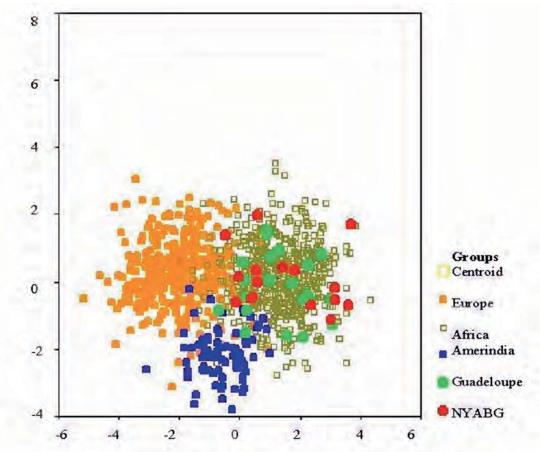


Figure 35. Scatter plot of craniometric distance: New York African Burial Ground population (red dots) compared to all Europe (orange squares), all Africa (olive squares), Native Americans (blue squares), and a seventeenth- and eighteenth-century cemetery from Guadeloupe, French West Indies (green dots).

The first two functions account for 54 percent of the variance, with eigenvalues of 2.03 and 1.05, respectively. The results of this study are consistent with known historical data. Many Africans were brought to English colonial America from what are now the modern nations of Ghana, Angola, Democratic Republic of Congo, and the Senegambia region (modernday Senegal and Gambia) (Curtin 1969; Diouf 2003; Gomez 1998).

Future research should include an analysis that only uses skeletal series from the regions that "contributed" most heavily in the seventeenth through eighteenth centuries to the Africans who were captured and enslaved in New York. The New York African Burial Ground Project collected primary data on Ghanaian populations at the AMNH, which provided a more diverse array of ethnic affiliations than was previously available from the published data on historical-period populations. Previous genetics and physical anthropological research has not focused on

the question of African American ethnic origins and thus has not over time produced a body of literature and appropriate comparative series for such analyses to be readily undertaken. Where African affinities or admixture have been studied, "racial" composites of diverse "sub-Saharan" or, at best, "West African" groups were constructed for analysis. The discussion of dental morphology below raises similar issues to these. There is a clear need to collect metric data on culturally specific, historically relevant comparative populations in order to fully examine the range of the New York African Burial Ground origins.

In fact, much the same can be said of colonial English and Dutch populations. The closest Western European groups available in the Howells series (the most extensive series, generously provided to us by its author) are Scandinavian. The AMNH collections (also graciously made available by Dr. Ian Tattersall) do not have a European series. Alternate collections that include the appropriate populations have been

Table 3. Centroid Values for Howells's, AMNH's, and Keita's Cranial Series, Functions 1 and 2

Group	Population Source	Function 1	Function 2			
	Howells's Cranial Series					
1	Norse (Norway)	0.49	-0.81			
2	Zalavar (Hungary)	0.67	-0.28			
3	Berg (Sweden)	2.00	-1.33			
4	Teita (Kenya)	-1.84	-0.48			
5	Dogon (Mali)	-1.08	-0.80			
6	Zulu (South Africa)	-1.56	-0.26			
7	Australia	-2.48	-0.62			
8	Tasmania	-1.32	-0.55			
9	Tolai (New Guinea)	-2.02	0.46			
10	Mokapu (Hawaii)	0.52	1.54			
11	Easter Island	-1.39	2.25			
12	Moriori	1.10	0.73			
13	Ankara (Plains Indians)	1.83	0.33			
14	Santa Cruz	0.70	-0.78			
15	Peru	0.77	-0.82			
16	North Japan	0.81				
17	South Japan	0.37	0.73			
18	Hainan	0.77	0.62			
19	Atayal	0.23	0.21			
20	Philippines	0.62	0.47			
21	Guam	0.66	1.76			
22	Egypt (ancient, Late period)	0.24	-5.62			
23	Bushman	-1.63	-2.49			
24	Andaman Islands	-1.90	-1.00			
25	Ainu	-0.21	0.19			
26	Buriat (Siberia)	3.70	-0.63			
27	« Eskimo »	-0.29	1.58			
28	Anyang	0.62	1.41			
29	S. Maori	1.02	1.25			
30	N. Maori	-0.27	1.22			
	AMNH ar	nd Keita's Cranial Series				
31	Angola	-1.92	0.09			
32	Ashanti (Ghana)	-2.31	0.18			
33	Congo	-1.06	-0.38			
34	"Gold Coast"(Ghana)	-2.03	0.17			
35	New York City	0.23	1.28			
36	New York City	1.82	0.18			
37	Staten Island	0.16	2.97			
38	Gabon	-0.83	0.51			
39	New York African Burial Ground	-1.51	0.53			

Note: Canonical discriminant functions evaluated at group means (group centroids).

identified, and every effort will be made to include them in future studies. The current study nonetheless contributes substantially to the search for origins of New York's earliest Africans by pushing the limits of current reference collections and showing the general craniometric affinities of the New York African Burial Ground sample. This study has demonstrated statistical relationships to specific ethnic populations to the extent available, although these statistical relationships need always to be measured in relation to historical plausibility. Furthermore, this examination has pointed to problems and their likely solutions if more robust ethnically specific research on diasporic origins is to be conducted in the future.

Dental Morphology

Analyzed in this section are dental trait frequencies and their intra- and interpopulation differences. Different populations appear to have similar ranges of dental cusp variation. As with other inherited traits, however, some distinct shapes of dental crowns (e.g., cusp patterns) are found more often in particular regions, ethnic groups, and families than in others. This section examines an extensive range of dental variation in more than 200 individuals from the New York African Burial Ground site. This part of the chapter explores the possible origins of the Africans in colonial New York City by comparing the frequencies of different dental shapes (morphology) found in the New York African Burial Ground sample to those of historically relevant, potentially paternal populations in Africa, Europe, and North America. Using specific dental traits, several pertinent questions arose: how does the New York African Burial Ground sample compare to other world populations? How does this sample compare to other African populations, based on the dental evidence? What is the relative degree of relationship within the population? Given the history of slavery on the African continent, can we determine the region of Africa in which this population originated, based on dental morphology?

Dental Comparison of New York African Burial Ground Individuals with Populations of the World

Variations in the degree and type of expression of dental morphology can be shown for different regional groups. These geographical and cultural patterns of frequency distribution are used to generate hypotheses about historical population relationships. This fact and the archaeological sturdiness of enamel make dentition valuable repositories of information on migration. Scott and Turner (1997) have recently provided an in-depth and detailed review of discrete dental variation among modern and recent human populations. This analysis incorporated data collected by many researchers during the past few decades. However, although extensive in scope, it should be noted that data for certain traits that we have noted are not included for many of the populations presented by Scott and Turner.

In their analyses of biological distance, Scott and Turner used Nei's distance statistic and the hierarchical clustering algorithm known as the unweighted pairgroup method using arithmetic averages (UPGMA) to produce trees, or dendrograms. As with most multivariate clustering techniques, there is no direct way to evaluate significance or error. They did find, with their rather large samples, that they would get essentially the same dendrograms no matter what combination of a standard-distance measure and clustering algorithm they employed (Scott and Turner 1997:288). Scott and Turner's analysis was based on single-trait frequencies on a single tooth on one side of the dental arcade. This was true even for traits that potentially can be exhibited across dental fields, as well as bilateral occurrences. This technique is favorable for a more complete collection that is taphonomically in good shape and that enables the researcher to control for large amounts of data. The dendrogram in Figure 36 shows the relationship between worldwide populations based on 23 crown traits (Scott and Turner 1997). It contains five clusters of world groups: Western Eurasia, Africa, Sunda-Pacific, Sahul-Pacific, and Sino-American. The African cluster is made up of two subgroups, West Africa and South Africa. This larger world classification of Africa is more closely aligned with the Sunda-Pacific populations than with the Western Eurasia populations. In Scott and Turner's analysis, North Africa is clustered with Western Eurasia. The same 23 dental traits used by Scott and Turner were compared to the data set from the New York African Burial Ground sample (Table 4). We used the SPSS average lineage (UPGMA), with Euclidean distance as the distance statistic, to produce our dendrograms (SPSS 1997) (Figures 37–39).

Based on Euclidean distance, the New York African Burial Ground data clustered closely to Scott and Turner's South African population data. Both, in

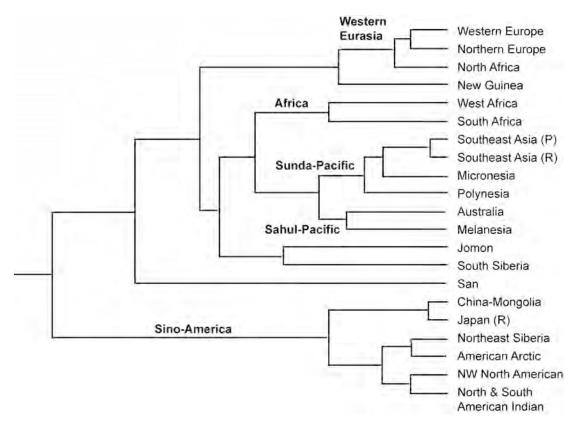


Figure 36. Worldwide populations based on 23 crown and root traits. (From *The Anthology of Modern Human Teeth,* by Richard Scott and Christy G. Turner II © Cambridge University Press 1997. Reprinted with the permission of Cambridge University Press.).

turn, grouped closely to a second cluster involving Western Europe, Northern Europe, North Africa, and New Guinea. Interestingly, West Africa and Khoisan-speaking people in the San region clustered together and were distant from the other African populations (see Figure 37).

When the same distance analysis compares only the African populations and Western Europe, the New York African Burial Ground sample clustered closely to North and South Africa and then Western Europe. The West African and Khoisan populations fall further from the previous groups (see Figure 38). Finally, when compared only to the African populations, the New York African Burial Ground sample clustered closely to North Africa, followed closely by South Africa, and clustering further from West Africa (see Figure 39).

Scott and Turner's classification of North, South, and West Africa can, however, be misleading. The category labeled South Africa in this data set was made up of populations from South, East, Central, and West Africa. Some Nubians of northeast Africa are included in the West Africa sample (Table 5). Within this framework, the New York African Burial Ground sample actually clustered closely to a pooled sample

of Africans south of the Sahara and some populations north of it

From the above analysis, we can determine that the individuals from the New York African Burial Ground sample were most biologically similar to individuals in West, Central, North, and South Africa. This trend continues as individual frequencies for each dental trait are partitioned. The farthest population clustersthus the least biologically related to the New York African Burial Ground—were from Northwest North America, North and South America, the American Arctic (i.e., Native Americans), China-Mongolia, recent Japan, and northeast Siberia (see Figure 37). As noted in our earlier discussion of craniometry, lumping diverse populations into arbitrary categories limits our ability to examine greater ethnic specificity with these methods. These data are, nonetheless, generally consistent with the regional origins of New York Africans as reported by the New York African Burial Ground Project's historians.

Another problem of comparative databases might be resolved in future studies. As previously discussed, most dental traits are measured in terms of grades, with the realization that scoring different levels of a grade

Table 4. New York African Burial Ground Dental Traits Distribution

Dental Trait	Observations/Total Sample
Winging/left	2/117
Shoveling ULI1	6/117
Double shoveling ULI1	5/140
Interruption groove LI2	15/136
Canine mesial ridge left (bushman)	19/122
Odontomes	1/117
3-cusped UM2	8/106
Carabelli's cusp ULM1	18/123
Cusp 5 ULM1	24/120
Enamel extensions ULM1	6/108
4-cusped LM1	4/92
4-cusped LM2	51/87
Y-groove pattern LLM2	26/95
Cusp 6 LLM1	7/95
Cusp 7 LLM1	11/102
Deflecting wrinkle left	6/94
2-rooted ULP1	42/76
3 rooted ULM2	70/73
2-rooted LC	_
Tome's root left	32/84
3-rooted LM1	_
1-rooted LM2	1/63
Distal trigonid crest left	2/80

Note: Sample sizes vary for different traits for the same tooth owing to postmortem deterioration and the amount of enamel damage during life and after burial. See Table 4.x for a list of conditions affecting sample size.

Key: LC = lower canine; LI2= left second incisor; LM1 = lower first molar; LM2 = lower second molar; LLM1 = lower left first molar; LLM2 = lower left second molar; ULI1= upper left first incisor; ULM1= upper left first molar; ULM2= upper left second molar.

is just as, if not more, relevant as simply noting its presence or absence. Even so, Scott and Turner (1997), when comparing world frequencies, analyzed a trait as either present or absent, or only considered the most prominent form of a morphological trait. For comparative purposes, we chose the same 23 dental traits and followed the same methodology. For example, Carabelli's cusp is a dental trait found on the mesiolingual

cusp of a maxillary molar. Carabelli's cusp can be exhibited in different grades, ranging from a groove or pit to a freestanding cusp in the same location. Following Scott and Turner's methodology, only grades 5–7 were considered in trait frequencies for comparison to other world populations. If scoring only grades 5–7, only 7 percent of the individuals from the New York African Burial Ground sample (with observable denti-

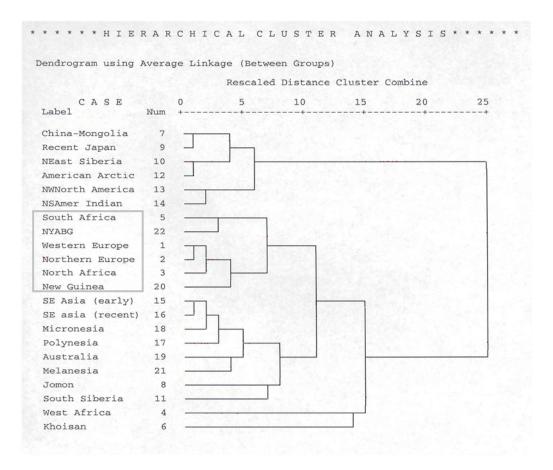


Figure 37. New York African Burial Ground compared to other world populations based on 23 crown and root traits (adapted from Scott and Turner 1997 by Arion Mayes for the 2004 version of this report).

Figure 38. New York African Burial Ground compared to other African populations and Western Europe based on 23 crown and root traits (adapted from Scott and Turner 1997 by Arion Mayes for the 2004 version of this report).

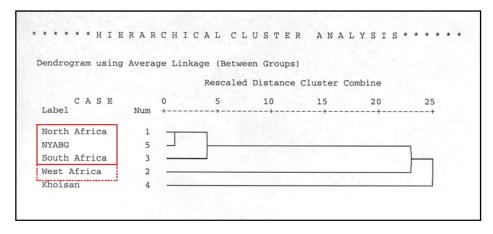


Figure 39. New York African Burial Ground compared to other African populations based on 23 crown and root traits (adapted from Scott and Turner 1997 by Arion Mayes for the 2004 version of this report).

Table 5. Scott and Turner Population Descriptions

Western Eurasia

Western Europe

Lapps, Reindeer Is., Karil Peninsula, England (Poundbury), Netherlands (Dorestad de Heul), Lent, Danish Neolithic

Northern Europe

Medieval Norway, Greenland, Iceland

North Africa

Algeria, Bedoin, Canary Islands, Carthage, Chad, Christian (Sudan), El Hesa, Kabyle, Kharga, Lisht, Meroitic, Mesolithic Nubians, Soleb, X-Group, North Africa (Algeria, Chad)

Sub-Saharan Africa

West Africa

West Africa, Nubia No. 117, Nubia No. 67/80

South Africa

Congo, Gabon, Ghana, Nigeria/Cameroon, Pygmy, South Africa, SeneGambia, Sotho, Tanzania, Togo/Benin, Tukulor

San

San, Khoi khoi

Note: From Scott and Turner (1997:318).

tion) exhibited the Carabelli's trait. However, if the lower grades (1–4) are considered unto themselves, then 33 percent of the individuals exhibited Carabelli's trait. When all scores are considered (present or absent), 40 percent of the New York African Burial Ground individuals exhibited some form of Carabelli's trait. An increase in worldwide sample sizes has now led to a more comprehensive understanding of how to

interpret patterns of trait expression through grades rather than simply as present or absent.

Multivariate cluster analysis on the same 23 dental traits was used to determine genetic affinity within the New York African Burial Ground sample. Although small clusters were apparent, no major groupings were visible. However, a variation in methodology to include all gradients of dental morphology may

clarify this point. These data are consistent with the historical expectation of the New York African Burial Ground sample as highly diverse, even if it consists of the expected range of African populations.

Tooth morphology is part of the biological heritage that humans carry with them when they migrate, much like their blood group genes, fingerprint patterns, PTC taste reactions, and other biological traits. When human groups are isolated from one another for a period of time, their crown and root trait frequencies diverge to varying degrees, depending on population size and the extent and temporal duration of isolation. When divergent populations come in contact and interbreed, the resulting populations possess convergent morphological trait frequencies. In other words, these polymorphic features of the dentition behave like other biological variables that are used to assess population history and evolutionary process [Scott and Turner 1997:12].

Following Scott and Turner's theoretical perspective, the analysis of discrete dental traits strongly indicates that the New York African Burial Ground sample is biologically similar. Multivariate analysis indicates a close degree of relationship between the New York African Burial Ground and other African populations, particularly West, Central, and South Africa. Of note is the consistent clustering of the New York African Burial Ground sample with Scott and Turner's Western European population, which includes a sample from the Netherlands. There is a degree of relationship that is worth further investigation given the population history of New York City. These data add to an expanding database on world population dentition and demography. The use of dental morphology in the discussion of population movement is not unique. However, the New York African Burial Ground provides an opportunity for investigating such techniques to shed light on a population of widely displaced individuals. That situation, and the fact that teeth are visible in the living and the dead, offer an opportunity to assess biological relationships between living populations, their relatives, ancestors, and descendants. The New York African Burial Ground, as we have approached it, also allows corroboration of these results against other biological traits, and historical, cultural, and artifactual evidence. Indeed, we have been guided by the preliminary archaeological data showing evidence of African cultural continuity in some funerary decorations at the site.

Molecular Genetic Assessments

Introduction: Overview, Limitations, and Approach

The genetic analyses of the New York African Burial Ground sample provide an unparalleled opportunity for understanding the population origins and demographic structure of this unique group. Unfortunately, DNA extracted from these samples suffers from a fragmented genome and the presence of polymerase chain reaction (PCR) inhibitors, some of which were comingled with the extracted DNA. Critical to our analyses has been the quality of the aDNA. The quantity and quality of aDNA is dependent upon the interment conditions, as well as the excavation specifics at the archaeological site. Therefore, we used the best standardized and established methods for aDNA analysis available at the time of analysis 1995–1999, so as to maximize genomic yield.

In 1995, GSA funded a small feasibility study with the following aims and objectives:

- 1. To isolate nucleic acids from bones and/or hair samples
- 2. To amplify specific mtDNA sequences via the PCR technique
- 3. To sequence the amplified products
- 4. To clone the amplified sequences for further study and provide a reservoir of these fragile sequences
- 5. To perform a phylogenetic analysis of the sequences to determine possible kinships and sites of origins for a small number of these individuals

Initial work on this small feasibility study was led by George, and this feasibility study was then extended by Kittles. The details of our methods and materials are reported below.

1995–1997 Protocol for Genetic Analyses of the New York African Burial Ground

As referenced above, the initial subsample was identified in 1995. We were able to extract and isolate nucleic acids from nine 200-year-old hair and bone samples by mid-June 1995. The aDNA from the New York African Burial Ground sample was extracted using the following standard methods.

Contamination control was maintained by providing separate rooms for extraction, amplification, and sequencing. All glassware, solutions, chemicals, instruments, and bones were sterilized either by autoclaving or by ultraviolet (UV) irradiation. Additionally, the bones were subjected to filing of a 1–2-mm layer of outer material to reduce the risk of surface contamination.

Pre-extraction-processing techniques included breaking the cleaned and resurfaced bone into small pieces, wrapping it in previously autoclaved heavyduty aluminum foil, placing the wrapped bone in liquid nitrogen, and placing this between sterilized metal plates wrapped in heavy-duty aluminum foil. The treated bone was then pounded into a fine powder using the metal plate. Liquid nitrogen was not required for the pre-extraction processing of the hair root samples.

DNA extraction and isolation involved subjecting 0.25 g of powdered bone to the silica and guanidinium thiocyanate (GuSCN) extraction protocol of Boom and colleagues (1990) and Höss and Pääbo (1993). In this protocol (discussed in more detail below), the strategy was to release nucleic acids by enzyme digestion, bind these to a silica column, and later elute them for quantification.

PCR amplification was prepared for 5 μ l of the 65 μ l of nucleic acid extraction volume. Using specific oligonucleotide primer pairs, in which one of the pairs had a biotinylated 5' end, the DNA was subjected to 35 cycles of PCR amplification (Höss and Pääbo 1993). The results were examined on a 2 percent NuSieve agarose gel.

1995–1997 Protocol Results

Results of the initial molecular genetic study were partially successful. We obtained aDNA from 9 of the 15 New York African Burial Ground samples studied during 1995–1997. Four of these 9 samples were successfully amplified using specific mtDNA primers. The amplified mtDNA sequences from the skeletal remains were not successfully cloned using the TA cloning vector (see Chen and Janes 2002:114) and the sequences were not subjected to successful phylogenetic analysis. Evidence of population affiliations contradicted more plausible cultural evidence in at least two cases, pointing to the necessity of methodological refinement (see Mack and Blakey 2004).

1998–1999 Protocols for Genetic Analyses of the New York African Burial Ground Sample

The second subsample consisted of seven New York African Burial Ground bone samples, some of which had been initially studied by George. Samples for the Project's mtDNA studies were selected based on our desire to represent the full spatial distribution of burials, age, and gender variation, and to include some individuals associated with definitive cultural artifactual evidence to provide an independent line of evidence for origins studies. The latter criterion was dominant for the first, or pilot, study of 15 individuals. The broad range of criteria mentioned above was most equitably applied in the third study involving 48 individuals (inclusive of the samples of earlier mtDNA studies). Kittles was able to bring an updated methodology to the project.

Contamination prevention was maintained by extensive autoclaving (of all buffers and water); regularized filtration purification (of these buffers and water); exclusive use of disposable lab coats, gloves, sleeves, masks, and caps; and bleach wipes of equipment followed by UV light irradiation. All pipette tips contained filters, and all PCR reagents were separated into aliquots to reduce the risk of cross-contamination. The mortars and pestles used to grind the bone to a fine dust were treated with 1N hydrogen chloride (HCl), rinsed with double-distilled water, and subjected to UV irradiation before each use.

Pre-treatment of bone for DNA extraction and isolation consisted of cutting off about 2 mm of the entire bone surface with scalpel blades. The resulting internal bone fragments (300–500 mg) were ground in a specimen-dedicated mortar and pestle to a fine dust.

DNA extraction and isolation continued using a silica-based protocol. In this procedure, silica powder was introduced to the digested sample, and the DNA bound under the influence of GuSCN; this allowed the remainder of the contents of the digest to be washed away. In following this established technique, the ground bone was incubated in 1000 µl of GuSCN extraction buffer overnight at room temperature resulting in the release of nucleic acids by enzyme digestion. The extraction buffer consisted of 4.7M GuSCN, 20 mM EDTA, 46 mM Tris (pH 8.0), and 1.2 percent Triton X-100. After incubating the solid-

tissue remains in the buffer, a pellet was produced by several centrifugations. The supernatants were then added to a silica suspension, and nucleic acids were isolated, eluted in 30 μ l aliquots, and quantified. As our experimental control, a blank extraction containing all reagents, but no tissue, was included in every set of extractions.

PCR amplification and sequencing was based on the amplification of the hypervariable segment I (HVS-1) of mtDNA and Y-chromosomal and autosomal microsatellite amplifications. Four sets of primers produced overlapping fragments of a 300-base-pair segment of the HVS-1. Primers were also included that amplified highly variable microsatellite markers of the Y chromosome–specific locus (DYS390) and the autosomal DNA locus (D5S471).

Amplification of mtDNA was performed in 30 µl reaction volumes of 150 µM dNTP's 10 mM Tris-HCl (pH = 8.3), 50 mM KCl, 1.0–2.0 mM MgCl₂, 0.6 units of AmpliTaq polymerase, 3.0 µl of 5 µM primer mix, and 7.5 µl of the DNA extract. The PCR conditions consisted of 40 cycles at 95°C for 50 seconds, 55°C for 50 seconds, and 72°C for 50 seconds. Amplification products were visualized on 3 percent agarose gels. Both DNA strands were then sequenced using fluorescent-labeled dideoxy terminator cycle sequencing chemistry using the ABI 373A DNA sequencer (ABI, Foster City, California). The Seq A and AutoAssembler programs (ABI, Foster City, California) were used to align and overlap both sequenced strands of DNA, allowing for the visual inspection of any ambiguities in the sequence.

Amplification of the Y chromosome and autosomal microsatellites used 10 μ l of DNA added to 200 μ M of dNTPs, 10 mM Tris-HCl (pH = 8.3), 50 mM KCl, 1.0–2.0 mM MgCl₂, 0.6 units of AmpliTaq polymerase (Perkin Elmer), and 0.33 μ M of primers. The PCR cycling conditions were 93°C for 3 minutes, 10 cycles at 94°C for 15 seconds, 55°C for 15 seconds, and 72°C for 30 seconds. Then samples were run at 20 cycles at 89°C for 15 seconds, 55°C for 15 seconds, and 72°C for 30 seconds. The final extension cycle was at 72°C for 10 minutes.

1998-1999 Protocol Results

Results of the molecular genetic analyses of the second subsample indicated a strong West and/or Central African ancestral presence in the studied New York African Burial Ground individuals. Only three of

the mtDNA samples exhibited unknown molecular variants of mtDNA. Even in these cases, an African maternal ancestral origin may be present, as the background database on African mtDNA diversity is still in an early stage of development.

1999 Protocols for Genetic Analyses of the New York African Burial Ground Sample

Analysis of the third subsample included 48 bone and 2 hair and/or tissue samples from the New York African Burial Ground. Analyses were completed in 1999.

Contamination prevention was maintained by autoclaving and purification of all buffers and water by filtration. Disposable lab coats and gloves were used during all steps. Benches and equipment were treated with bleach and irradiated by UV light. All pipette tips contained filters. PCR reagents were separated into aliquots. The mortar and pestle (used to grind the bone into a fine dust) were treated with 1N HCl, rinsed and double-distilled water, and UV irradiated before each use.

Pre-extraction practices involved small samples of bone being cleaned by removing about 2 mm of the entire bone surface with sterile scalpel blades.

DNA extraction and isolation used internal bone fragments (300–500 mg) ground into a fine dust using a project-dedicated mortar and pestle. The ground bone was then incubated in 1,000 μ l of GuSCN extraction buffer overnight at room temperature. The extraction buffer consisted of 4.7M GuSCN, 20 mM EDTA, 46 mM Tris (pH = 8.0), and 1.2 percent Triton X-100. After incubation, the solid-tissue remains were pelleted by centrifugation and supernatants added to a silica suspension. Nucleic acids were isolated and eluted into 30 μ l aliquots. A blank extraction containing all reagents, but no tissue, was included in every set of extractions, as a control.

PCR amplification and sequencing used four sets of primers to amplify the HVS-1 of mtDNA. The primers produced overlapping fragments of a 300-base-pair segment of the HVS-1. Amplification of mtDNA was performed in 30 μ l reaction volumes of 150 μ M dNTP's 10 mM tris-HCl (pH = 8.3), 50 mM KCl, 1.0-2.0 mM MgCl₂, 0.6 units of AmpliTaq polymerase, 3.0 μ l of 5 μ M primer mix, and 7.5 μ l of the DNA extract. The PCR conditions consisted of 40 cycles

Table 6. Countries,	Geographical Regions	and Historical Expo	rt Sites for Enslaved Africans
---------------------	-----------------------------	---------------------	--------------------------------

Modern Country Represented in the 1999 Database	Geographical Region Represented in the 1999 Database	Nearest Probable Historical Slave Export Site(s)		
Benin	West Africa	Bight of Benin		
Burkina Faso	West Africa	Gold Coast		
Cameroon	West Central Africa	Bight of Biafra		
Central African Republic	Central Africa	Bight of Biafra		
Guinea	West Africa	Senegambia/Upper Guinea		
Mali	West Africa	Senegambia		
Morocco	Northwest Africa	Moroccan west coast		
Niger	West Africa	Senegambia		
Nigeria	West Africa	Bight of Biafra/Bight of Benin/Calabar		
Senegal	West Africa	Senegambia		
Sierra Leone	West Africa	Windward Coast		

at 95°C for 50 seconds and 72°C for 50 seconds. Amplification products were visualized on 3 percent agarose gels. Both DNA strands were then sequenced using fluorescent-labeled dideosy terminator cycle sequencing chemistry (ABI) and the ABI 373A DNA sequencer (ABI, Foster City, California) and the Seq A and AutoAssembler programs (ABI, Foster City, California). The Seq A and sequenced strands of DNA allowed for the visual inspection of ambiguities in the sequence. Sequence comparisons were accomplished using PAUP Version 4.0 (Swofford 1999). Because of the large data set, an exact search was unfeasible, so extensive branch swapping was performed in order to find optimum trees.

1999 Protocol Results

Results from the molecular genetic analysis of the third subsample allowed the comparison of our results with a database of published mtDNA sequences from around the world. Currently, 1,800 sequences have been entered in the database. Accessible Native American and European sequences were represented among the published mtDNA sequences; however, of the 48 mtDNAs sequenced from the New York African Burial Ground, 45 evidenced mtDNA haplogroups found in West and Central African populations and their recent descendants. The remaining three sequences were unknown, as previously noted. In the published mtDNA database, the number specific to

African populations is about 849. Among these 849, those observed in West and Central Africa includes a total of 520 populations. The database includes individuals sampled from the following countries: Benin, Burkina Faso, Cameroon, Central African Republic, Guinea, Mali, Morocco, Niger, Nigeria, Senegal and Sierra Leone. In Table 6, we note for each country the geographical region and nearest probable historical export site for enslaved Africans bound for the Americas during the seventeenth and eighteenth centuries.

At the time of our analyses, no samples were included on the published database from Ghana, Angola, Gabon, Congo, Liberia, or other areas known historically to have included important catchment areas or export sites for the transatlantic trade in enslaved Africans to the Americas.

Nucleic acids were extracted from all 48 of the bone samples provided in this subset of the New York African Burial Ground. Extractions from the two tissue samples, Burials 23 and 97, failed to yield adequate DNA. For the successful 48 DNA extractions, mtDNA control region sequences (fewer than 300 base pairs [bp]) were amplified by PCR, and the products were visualized using ethidium bromide—stained agarose gels. Direct sequencing of the products revealed several polymorphic sites among the samples.

The level of genetic diversity observed in Subsample 3 from the New York African Burial Ground was quite high. Forty-five of the 48 sequences

were unique, and the haplotype diversity closely approached 1.0(0.997 + 0.01). This high level of haplotype diversity is common for populations of African descent (Vigilant et al. 1991; Watson et al. 1997). Countries, geographical regions, and macroethnic groups are listed when haplotypes appear restricted to such units. Sequences that were phylogenetically related to West or Central African sequences but are not observed in any particular geographical region or among a specific macroethnic group, are designated West/Central African. Haplogroups are also noted. Although there has been limited and sporadic sampling of Africans for genetic studies, by 1999 many studies had identified at least three mtDNA haplogroups in African populations: L1, L2, and L3. Table 7 details the genetic affinity of samples as they relate phylogenetically to the published data (as of 1999).

All three haplogroups were observed in the third subsample from the New York African Burial Ground individuals. Not surprisingly, the L1 haplogroup is observed in the least-sampled geographical area of Africa, so we expect that it may be more common than reported. Haplogroup L2 is common among the Niger-Kordofanian speakers from the Senegambia and Gold Coast regions of West Africa. The L2 haplotypes, which may represent the descendants of migrants of Bantu speakers into West Africa, constitute 71.1 percent of the studied New York African Burial Ground individuals.

The third mtDNA haplogroup, L3, is quite common in East Africa and in the Horn region of Africa. Although the L3 group is more common in East Africa, it is observed at an appreciable frequency in West Africa, particularly among Afro-Asiatic speakers. Because many of the enslaved Africans came from more inland areas of West and Central Africa, such as northern Nigeria, northern Cameroon, and southern Niger, for example, this may explain our observation of the L3 haplogroup in 22.2 percent of the New York African Burial Ground individuals. Table 7 summarizes the molecular genetic affinities of the New York African Burial Ground sample.

Genetic Initiatives and Protocols for 2000–2004

When 219 New York African Burial Ground samples were transferred to the Bioanthropology Research Laboratory at the University of Maryland in 2000,

our initial assessment identified four major problem areas:

- 1. Inadequate database on contemporary and archaic African genetic diversity
- 2. High diversity levels of intra-African genetic variability
- 3. Complex ethnic histories and demographic patterns
- 4. Difficulty in extracting sufficient quantities (and quality) of archaic skeletal DNA for multiple analyses

Our solutions were to:

- 1. Establish an international advisory board of senior anthropological geneticists
- 2. Identify historians and anthropologists with specific regional expertise
- 3. Utilize pooled regional samples to recreate regional clusters of marker genes (possibly using DNA microarrays)
- 4. Apply advanced biotechnological techniques to recover aDNA and test against regional pools
- 5. Set up a National African DNA Bank(s) for future reference

Our initial focus was to address the serious lapses in the exiting database on African genetic diversity on the continent and throughout the Atlantic diaspora. For some time, we had known that the limitations in the existing comparative database posed a significant hindrance to the reliable placement of New York African Burial Ground individuals in particular geographical regions of Africa and among specific contemporary African macroethnic groups. In an effort to begin to tie particular genetic variants to specific regional areas of the world, we began several important initiatives.

In 2000, several senior geneticists agreed to serve on an advisory board related to genetic analyses for the New York African Burial Ground. They were Dr. Kenneth Kidd (Yale University), Dr. Kenneth Weiss (Pennsylvania State University), Dr. Michael Crawford (University of Kansas), Dr. Robert Ferrell (University of Pittsburgh), Dr. Alain Froment (Orleans University), and Dr. Robert Murray (Howard University).

Information from the New York African Burial Ground historians suggested that West Central Africa was an important source of the Africans of eighteenth-century New York. Therefore, we recruited and worked closely with the following regional experts:

Table 7. Molecular Genetic Affinities of Individuals in the NYABG

Burial No.	Tissue Site Sampled	mtDNA Haplo- group	Geographical, Country, and Macroethnic Genetic Affinity
1	right radius	L2	West/Central African
6		L2	West Africa, Benin (Fulbe peoples)
7	not indicated	L3	West Africa, Niger
9	right radius	L2	West Africa, Benin (Fulbe peoples)
11	right ulna	L2	West/Central African
12	not indicated	L2	West/Central African
16	right ulna	L2	West/Central African
20	right fibula	L2	West/Central African
25	right ulna	L3	West/Central African
32		L3	West Africa, Niger
37	right fibula	L2	West/Central African
40	right fibula	L3	West Africa, Niger
47	right ulna	L2	West Africa, Benin (Fulbe peoples)
49	right fibula	L2	West/Central African
51	right fibula	L2	West/Central African
56	right radius	L3	West Africa, Niger
58	not indicated	L2	West/Central African
63	not indicated	L2	West/Central African
67	right radius	L2	West/Central African
71		L2	West/Central African
73	right radius	L2	West Africa, Nigeria (Yoruba peoples)
76	right fibula	L3	West Africa, Niger
89	right ulna	L1	West/Central African
97	right ulna	L2	West Africa, Nigeria (Fulbe peoples)
101	not indicated	L3	West Africa, Niger
105	not indicated	L1	West/Central African
107	right fibula	L2	West Africa, Nigeria (Hausa peoples)
115	right fibula	L3	West Africa, Niger
122	right ulna	L2	West Africa, Nigeria (Hausa peoples)
135	right fibula	L2	West//Central African
138	right fibula	L2	West Africa, Senegal (Mandinka peoples)
144	not indicated	L2	West/Central African
151	right ulna	L2	West/Central African
154	right fibula	L3	West Africa, Niger
158	right fibula	L2	West Africa, Senegal (Mandinka peoples)

Burial No.	Tissue Site Sampled	mtDNA Haplo- group	Geographical, Country, and Macroethnic Genetic Affinity
171	right ulna	L1	West/Central African
176	not indicated	L2	West/Central African
180	right radius	L2	West Africa, Senegal (Mandinka peoples)
194	not indicated	L2	West Africa, Nigeria (Fulbe peoples)
219	right fibula	L3	West Africa, Niger
226	not indicated	L2	West/Central African
242	right fibula	L2	West Africa, Nigeria (Fulbe peoples)
310	right rib	L2	West/Central African
335	right ulna	L2	West/Central African
340	not indicated	L2	West Africa, Nigeria (Fulbe peoples)

- Dr. Paul Nkwi, Executive Secretary, Cameroon Academy of Sciences, Editor of *African Anthropologist*, and internationally known social anthropologist
- Professor Victor Ngu, President, Cameroon Academy of Sciences, noted physician and inventor
- Dr. Peter Ndumbe, Dean, Medical School, University of Yaounde 1, physician, specialist in infectious disease, and director of the Research Institute associated with the medical school
- Dr. Ugo Nwokeji, Professor of History, University of Connecticut, expert on the export of West and Central Africans during the transatlantic slave trade
- Dr. Charles Dimintyeye, Cultural Attaché, Embassy of the Republic of Cameroon, Washington, D.C., professor of French and expert on francophone West and Central Africa
- Professor Joseph-Marie Essomba, Professor of Archaeology, University of Yaounde I, expert on archaic evidence for human occupation in West and Central Africa

In 2000–2002, efforts were underway to develop the first human DNA bank in Africa. Dr. Fatimah Jackson made two critical collaborative contacts: Dr. Jeanne Beck, Vice President of Coriell Institute for Medical Research, Camden, New Jersey, and Dr. Peter Ndumbe, Dean of the Medical School, University of Yaounde I, Yaounde, Cameroon. After a series of meetings and working sessions with scientists at Coriell Institute for Medical Research (New Jersey

Medical and Dental School) and the University of Yaounde I College of Medicine (Yaounde, Cameroon, West Central Africa), plans were implemented to lay the foundations for this bank. Cameroon's central location in Africa and highly genetically diverse population—as well as the presence of an adequately developed infrastructure and enthusiastic and supportive scientific and political communities—made the country an ideal choice for housing this bank. Coriell Institute for Medical Research offered to train Cameroonian technicians in DNA banking techniques. The University of Yaounde I offered its Research Institute as a permanent site for the bank. With the permission and support of the Cameroonian Academy of Sciences, the Cameroon Prime Minister's Office, and the Ministry of Health, the bank began in July 2002. In November 2002, an international workshop was held in Yaounde, Cameroon; the goals and objectives of the bank were outlined, its direct relationship to the ABGP indicated (Dr. Michael Blakey was among the participants at the workshop), and the plans were laid for a collaborative grant proposal to the National Institutes of Health to support the bank. To date, the bank has already collected and extracted DNA samples from over 400 West and Central Africans and is officially linked, through the Ministry of Tourism, with the United Nations Educational, Scientific and Cultural Organization's (UNESCO's) "Route of the Slaves" Project.

In 2002, Dr. Jackson began discussions with technical experts at Affimetryx Corporation to develop a DNA microarray that would provide rapid assessments of African regional markers. At that time, each gene

chip could contain 2,000 single nucleotide polymorphisms (SNPs). Our plan is to identify, through the literature and through direct collections, regional African variation in SNPs. SNP variation among specific African regions will then be used to design custommade DNA microarrays for target testing, analysis (bioinformatics), and interpretation. The geographical regions identified as major sources of genetic polymorphism for eighteenth-century New York Africans include Central Africa, Bight of Biafra, Mozambique, Senegambia, Upper Guinea, Bight of Benin, and the Gold Coast. We continue to concentrate our research on groups from these geographical regions, as they provide the strongest baseline information on the New York African Burial Ground ancestral template; these regions provide insights into eighteenth-century levels of African American genetic sequence polymorphisms. Further, these regions most powerfully permit reconstructions of African and non-African origins. Our methods for these ethnogenetic reconstructions include the following:

- 1. Archaic map analysis
- 2. Regional ethnic reconstructions
- 3. Group displacement tracking
- 4. Ethnic and regional verification using alternative documentation
- 5. Geographical information system (GIS) mapping using vector and raster maps
- 6. Contemporization of the findings (i.e., determining the modern equivalents)
- 6. Statistical analysis

In 2003–2004, Dr. Jackson received Institutional Review Board (IRB) clearance to initiate genetic studies among the African-descended student, faculty, and staff population at the University of Maryland. The aims of this project were to:

- 1. Attract 100–200 African, Afro-Caribbean, and African American students currently enrolled at the University of Maryland to a workshop-dinner on genetics and health
- 2. Provide these students with an opportunity to extract DNA from various fruits to learn about some of the

latest advances in the genetics of disorders disproportionately affecting peoples of African descent

3. Collect and analyze buccal (cheek) cell samples from each student for the presence of genes associated with specific regional origins. This DNA will become part of a database for future comparative analyses with the New York African Burial Ground individuals

To date, we have collected 183 DNA samples from individuals from all over the world, including Europe (Scotland, Ireland, Denmark, Germany, Italy, and Spain), South America (Brazil, Colombia, and Peru), Asia (Nepal, India, Butan, Pakistan, China, and Korea) and Africa (Ghana, Nigeria, Cameroon, Liberia, Congo, Guinea, Ethiopia, Senegal, Kenya, and Tanzania), as well as the United States. In April 2004, our first paper was presented at the annual meetings of the American Association of Physical Anthropologists entitled "African-American lineage markers: determining the geographic source of mtDNA and Y chromosomes" (Lorenz et al. 2004).

Summary of Planned Future Analyses and Proposed Timetable

The genetic analysis of the New York African Burial Ground provides a unique opportunity to explore and understand human biology and biodiversity at a very technologically sophisticated level. To our knowledge, our studies represent the first attempt to characterize an African–African American historical-period population at the molecular genetic level of assessment. With full access to the New York African Burial Ground sample and adequate time to complete these analyses, we feel that a major contribution can be made to the knowledge base, with positive effects for the entire nation. Table 8 summarizes the planned future analyses, the timetable for these analyses, and the support structures already in place to address these analyses.¹

¹ These studies were included in the original research design of the project (Howard University and John Milner Associates), and bone samples were collected for this purpose. The GSA denied Dr. Jackson's team access to the bone samples for these studies in 2004 (the editors).

Table 8. Anticipated Future Genetic Analyses of the NYABG Samples

Type of Analysis	Relevant Genomic Segments for Study	Project Initiation Date		Project Support Status as of June 2004
NYABG ancestral origins (African, European, Native American)	mtDNA haplo- groups, Y-chro- mosome and autosomal STRs	2002	2009	Funding received from David C. Driskell Center for Diaspora Studies (UM) and Nyumburu Cultural Center (UM); currently working on NIH proposal with colleagues at Coriell Institute for Medical Research.
Biological affinities among NYABG individuals	mtDNA haplo- groups, Y-chro- mosome and autosomal STRs	2003		Critical feedback received from NYABG archaeologists for "in progress" NSF grant proposal.
Molecular sex of NYABG individuals	amelogenin gene located on the human sex chromosomes	2004	2008	NSF grant proposal in advanced stage of development.

Key: NIH = National Institutes of Health; NSF = National Science Foundation; STRs = short tandem repeat polymorphisms; UM = University of Massachusetts

CHAPTER 6

Isotopic and Elemental Chemistry of Teeth: Implications for Places of Birth, Forced Migration Patterns, Nutritional Status, and Pollution

A. H. Goodman, J. Jones, J. Reid, M. E. Mack, M. L. Blakey, D. Amarasiriwardena, P. Burton, and D. Coleman

Introduction

Concerns about individual and group origins are central to the study of the New York African Burial Ground. A key goal of the project is to provide scientific insights into the geographic origins of individuals. Enslaved Africans came from different regions of Africa. Can we determine more precisely the geographic area where individuals and groups came from and what their ethnic affinities were? At what ages were enslaved individuals forced to involuntarily leave their homelands? Which individuals came to New York via the Caribbean or some other destination in North America? Who was the first generation enslaved, and who was born into slavery?

Although origin questions are central to this project, providing insights into origins is difficult. To date, few methods provide clear answers. Historical documents such as slave-ship manifests and auctions provide an overall and indispensable source of information on geographic origins, ethnicities, demographic patterns, and even names (e.g., see Gomez 1998; Hall 1992; Lovejoy 1997, 2003). However, there is no method we are aware of that can link these historical records to individual burials.

Archaeological information such as artifacts and burial position may suggest an individual's natal home (geographic place of birth), possible ethnic affinity, or status within an enslaved community (Corruccini, Aufderheide, et al. 1987; Handler 1997; Samford 1994). However, because cultural practices, such as placing a burial in extended position or facing east, are generally without fixed temporal and spatial boundaries, suggestions as to geographic and ethnic origins must be appropriately broad and speculative (DeCorse 1999) and sensitive to the fact that such practices potentially convey multiple messages (Perry and Paynter 1999).

Information derived from bones and teeth-that is, bioarchaeological information—may similarly provide insight into geographic and ethnic origins. Genetic information derived from bone and tooth size and shape and, more directly, from mtDNA provide a means to compare an individual or group with values from contemporary "ethnic groups" (see Chapter 5) (Jackson 1997; Watson et al. 1996). The resulting data provide insights into genetic and, by extension, ethnic affinities. Although extremely powerful, these methods are also limited. Because humans historically do not live in closed communities, genetic traits and frequencies are fluid, open, and not culturally bounded. As well, the relationship between genetic affinity and ethnicity may change over time because of group fissioning, exogamy, and the fluidity of ethnic categories (Goodman 1997).

Other types of bioarchaeological information may provide insights into natal homes and ages at forced

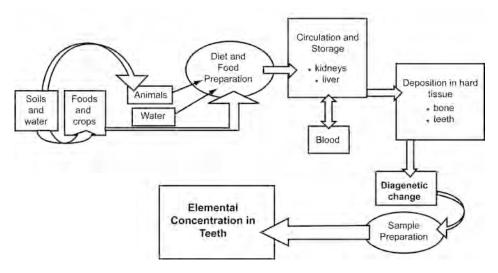


Figure 40. Elemental Uptake/Deposition Model.

migration. For example, death in the first decade of life suggests that an enslaved child was born in the Americas versus Africa or the Caribbean because historical documentation shows that enslaved African New Yorkers were most often "young adults from whom the buyer could expect many years of service" (McManus 2001:36; see also Lydon 1978). Corruccini, Jacobi, et al. (1987) have suggested that generalized tooth-root hypercementosis, associated with seasonal "rehabilitation" following cycles of poor nutrition throughout most of the year, may distinguish Caribbean-born from African-born individuals among an enslaved population in Barbados.

Conversely, Handler (1994) has suggested that culturally modified teeth (CMT), teeth that have been intentionally and decoratively chipped, filed, or otherwise modified, in enslaved Africans in the Americas, is a marker of African birth. Permanent teeth begin to erupt after about 6 years (Smith 1991), and historical documentation of CMT in Africa consistently shows that the practice was most often performed on individuals approaching their teens and older (van Rippen 1918). More important still, Handler (1994) made a strong case for the assumption that this cultural practice was discontinued under enslavement in the Caribbean and the Americas. In this chapter, we provide two pilot chemical tests of the hypothesis that young individuals were born into slavery and individuals with CMT were born in Africa.

One of the most exciting technical developments in analytical chemistry is the maturation of multiple techniques for analysis of the geographic origins of humans and other organisms with sequentially calcifying tissues such as fish otoliths and human teeth (Campana et al. 1994; Cox et al. 1996; Evans et al. 1995; Lee et al. 1999; Lochner et al. 1999; Outridge 1996; Outridge et al. 1995). At the time of rediscovery of the burial ground, chemical ecology studies were just beginning to show that strontium and oxygen isotopes in hard tissues reflect landscapes during their calcification and that each landscape has a somewhat unique elemental and isotopic signature (Ambrose 1991; Blum et al. 2000; Ericson 1985, 1989; Larsen 1997; Price, Grupe, et al. 1994; Price, Johnson, et al. 1994; Schwarcz et al. 1991; Schwarcz and Schoeninger 1991; Sealy et al. 1991; Sealy et al. 1995; White et al. 1998) (Figure 40). Emerging with the development of studies of enamel, which forms in early life, these new techniques provided the first unambiguous methods for reconstructing human landscapes at the time of birth and through the first decade (Cox and Sealy 1997; Cox et al. 2001; Grupe 1998; Gulson et al. 1997; Sealy et al. 1995).

The ability to track individuals' natal homes and then their ages at movement from their places of birth is based on the fortunate codevelopment and intertwining of three advancements: (1) better understanding of the geology and chemical ecology of landscapes; (2) better understanding of patterns of calcification of dental enamel, dentin, and cementum; and (3) the development of chemical analytical methods that allow for the "microsampling" of enamel and other hard tissues.

The hard-tissue samples provide a chemical signature of individuals at different ages of development. With samples taken from sequentially developing areas, one can track changes over the life of an individual. Cementum provides information on annual changes (Evans et al. 1995; Hals and Selvig 1977; Tsuboi et al. 2000), whereas primary enamel and dentin can provide a chronology of change in early months and years.

The purpose of this chapter is to present results from our ongoing research on the use of multiple chemical methodologies to provide insights into the geographic origins and ages at migration of individuals from the New York African Burial Ground. The first part of the chapter provides an overview of chemical methods that are relevant to a full study of geographic origins, ages at migration, nutritional status, and pollution exposure. In the second section, we provide detailed methods and the results of research that have been completed thus far on strontium isotope ratios and variation in multiple elemental concentrations, or elemental signature analysis (ESA). We then compare the chemical signatures of individuals assumed to be African born based on the presence of modified teeth with individuals assumed to be born around New York because of their young age at death. We highlight an unexpected finding: that lead concentrations are significantly elevated in the individuals who were born in New York and that these elevations appear to begin in the first years of life. Finally, we discuss the implication of the completed research and the benefits that would accrue from additional research.

Tooth Development and Chemistry

Teeth contain unique information about past environmental and physiological conditions. The pattern of formation of enamel and dentin is clearly demarcated and ringlike, much like the rings of trees (Goodman and Rose 1990; Kreshover 1960) or, more so, the leaves of an onion or an artichoke. Furthermore, once formed, the dental hard tissues, and especially enamel, which is acellular and nearly totally mineralized, are essentially inert (Carlson 1990). Earlier in this century, Massler et al. (1941:36) confidently stated that "enamel and dentin in the formative and calcifying stages of their growth serve as kymographs on which are permanently recorded physiologic or pathologic changes in metabolism."

The potential of the dental hard tissues continued to be echoed through the second half of the twentieth century. Sharon (1988:124) advocated for a scientific "tooth bank" because "teeth are storehouses of invaluable information for biological, physical, and medical sciences. . . . Teeth can provide keys to provenance, development . . . exposure to pollutants and provide a permanent cumulative, qualitative, and quantitative record of insult." In a commentary in *Science* on the developing field of biogeochemistry, Kohn (1999:335) noted that "enamel retains an exquisite microstructure produced when the animal precipitated its tooth and is the material of choice for terrestrial studies." All authors assert that with further research, teeth will yield information applicable to a wide variety of environmental and biological questions.

Indeed, teeth have begun to yield insights about life conditions during their formation. Starting with the work of Massler and colleagues (Sarnat and Schour 1941), many researchers have evaluated variations in enamel's external morphology and histological structure in relationship to histories of disease and other conditions that might disrupt development (see Chapter 9). These studies have shown that linear enamel hypoplasias, lines or bands of decreased enamel formation, are linked to a wide variety of conditions that are sufficiently severe and long lasting to disrupt ameloblasts, the enamel-forming cells (Goodman and Rose 1990). Furthermore, the locations of these defects on tooth crowns reflect the timing of the physiological disruption (Goodman and Song 1999; Sarnat and Schour 1941). The sensitivity of ameloblasts to physiological conditions, enamel's inertness once formed, and the ability to discern the timing of disruption from their location make linear enamel hypoplasias biological records of past physiological statuses (see Chapter 8).

In a prior study of the burial ground, Blakey and coworkers (see Chapter 8, this volume) used enamel hypoplasias recorded on the teeth of adults as an index of childhood conditions; permanent tooth crowns develop from about the time of birth to approximately 7 years of age. Blakey and coworkers found a moderate rate of enamel defects compared to Caribbean slaves (Corruccini et al. 1985), suggesting less stress in childhood. However, these preliminary results are complicated by the fact that many of the adults may have grown up in Africa rather than as enslaved Africans in New York. Tooth chemistry may be able to resolve who grew up in the New York area, somewhere in Africa, or in a third location, such as the Caribbean. Furthermore, taking advantage of the

different times of calcification of different teeth and regions within a tooth, it may be possible to estimate the age of individuals at the time of forced migration or any other geographic relocation.

Indeed, analyses of the chemical composition of dental tissues may provide new and complementary insights into (1) hard-tissue chemistry and development, (2) diet and nutritional physiology, (3) the movement and migration of individuals, and (4) diverse environmental conditions such as industrial lead production. For example, paleonutrition, the study of the diet and nutrition of past peoples, emerged in the 1970s from developments in the chemical analysis of bone, combined with an understanding of ecological and physiological processes governing the deposition and retention of elements in calcified tissues (Aufderheide 1989; Price et al. 1985). The promise of this field is that isotopic and elemental concentrations in preserved hard tissues would reflect aspects of dietary intakes or nutritional status. Recent developments are just now beginning to suggest that the potential of chemical studies of teeth may be reached.

Relative to morphological and histological analysis, the delay in maturity of this field is based on at least three factors.

- First, bone was initially the preferred hard tissue for study. However, as results accrued, many researchers began to realize that the processes governing elemental and isotopic incorporation and turnover of bone (and in the case of archaeological bone, postmortem changes) were more complex than previously realized.
- Second, until recently, methods were not widely available to chemically relate areas of enamel to known periods of development (prenatal, early infancy, childhood, etc.). The development of microsampling methods and. in particular laser ablation analysis, which is keyed to the ring-link development of enamel and dentin, is now solving this second problem (Outridge 1996).
- Third, interpretations of bone elemental values are limited because of lack of background information and lack of controlled studies of ecological, physiological, and biochemical processes. Although enamel offers important advantages of highly regulated calcification geometry and inertness once formed, our understanding of the significance of its elemental concentrations remains rudimentary for the same reasons.

The Histology and Development of Dental Calcified Tissues

Human teeth consist of three hard tissues: enamel, dentin, and cementum (Figure 41). Enamel forms the exterior of the crowns of human teeth; dentin makes up the interior of the crown and roots, and a thin layer of cementum covers the roots. In addition to the "primary" cementum and dentin, which is formed early in life, secondary (circumpulpal) dentin and secondary cementum are continuously deposited.

A summary of variations among the dental hard tissues and bone is presented in Table 9. Some key differences are the hardness of enamel and its lack of regenerative (turnover) abilities.

Enamel

The hardest and one of the most specialized tissues in the body, enamel covers the crowns of teeth (see Figure 41). The thickness of the enamel layer ranges from less than 0.1 mm near the cervical border of deciduous teeth to a few millimeters on the crowns of permanent molars. Enamel is formed from ameloblasts that derive from the inner enamel epithelium. After odontoblasts begin secreting the dentin matrix, adjacent ameloblasts quickly begin secreting enamel matrix. Once the full thickness of enamel matrix is reached, ameloblasts change morphology and physiology consistent with a change in role from matrix secretion to absorption of protein and water and calcification. After enamel is fully calcified, ameloblasts become senescent; mature enamel is acellular and essentially dead; it is 97 percent calcified tissue. The temporal record of past physiology and chemistry may be seen to follow the enamel growth lines, stria of Retzius (see Figure 41). Enamel is the tissue of choice for our research because its formation is well understood, and it is acellular, nonvital, and nearly completely composed of apatite crystals (Cleymaet et al. 1991).

Dentin

Tooth formation begins with the secretion of predentin by odontoblasts, the dentin-forming cells. Dentin formation is highly regulated and occurs in layers or sheets, as odontoblasts are recruited to secrete dentin matrix. The pattern of formation of dentin is visible in growth lines called contour Lines of Owen (see Figure 41). Dentin calcification occurs relatively quickly after the collagenous dentin matrix is formed. Like all

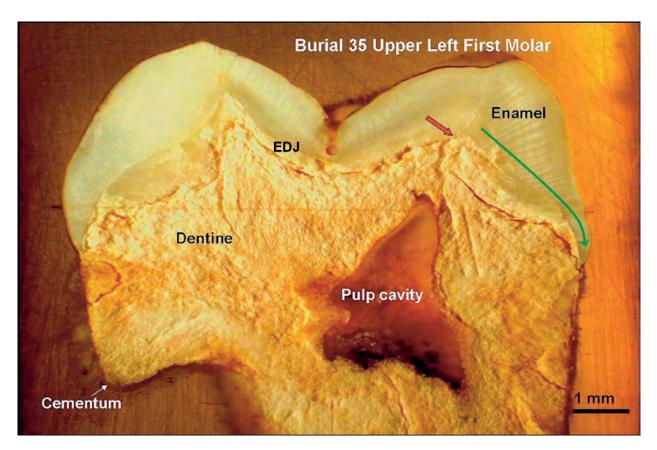


Figure 41. Longitudinal cross section of a permanent upper left first molar from Burial 35, an 8–10-year-old child. The dental tissues—enamel, dentine, and cementum—and the pulp cavity are labeled. The green arrow indicates the general orientation of crown formation. Enamel formation and calcification begin at the enamel-dentine junction (or EDJ) near the "dentine horn" (indicated by the red arrow) and continues outward and downward until the crown is complete. As a result, early forming layers are "buried" within the crown, whereas the last layers are completed at the surface, near the root.

Table 9. Comparison of Dental Hard Tissues and Bone

	Organic Internal Cell Turnover	Turnover	Chemical Composition (Average %)					
Tissue	Origin	Framework	Crystal	Space	Ability	Organic	Inorganic Salt	Water
Enamel	ectoderm	pseudokeratin	apatite	none	none	0.3	97.2	2.5
Dentin	ectomesenchyme	collagen	apatite	dentinal tubule	odontoblast	15	75	10
Cementum	mesoderm	collagen	apatite	canaliculi	cementoblast	23	65	12
Bone	mesoderm	collagen	apatite	canaliculi	osteoblast	21	65	14

other calcified tissues, apatite is dentin's main crystal component (Ten Cate 1985).

A small amount of secondary (or circumpulpal) dentin is continuously deposited after eruption. Chemical characterization of this dentin is useful as a referent for average conditions over a long span of

time, such as long-term lead exposure (Needleman and Bellinger 1991).

Cementum

Cementum (or cement) is a thin covering on the roots of teeth. It is relatively similar to bone in a number of

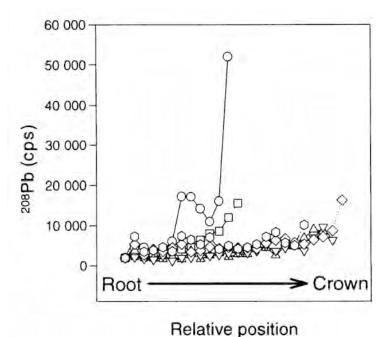


Figure 42. Outridge and coworkers (1996) were the first group to use LA-ICP-MS to study chemical changes in teeth, In this figure (Outridge et al. 1995:167), they illustrate changes in ²⁰⁸Pb content of six adjacent annual cement rings of a walrus tooth (Pb is estimated as counts per second). Each layer is represented by a different symbol, with 11–20 ablation areas per layer. A spike occurs in one layer; however, the lead content is quite variable. Because human cementum is very thin and more vital than enamel and dentine, we have not chosen to focus on it. However, if time permits, we will pilot a laser ablation study of human cementum.

respects, including embryological origin, basic structure, and degree of calcification. Its apatite crystals are similar in size and structure to bone and dentin, about 200–1,000 angstroms in length and 30 angstroms in width (Carlson 1990). One notable feature of cementum is that in addition to a primary layer in mammals, it is continuously deposited in annual rings, which has been used in wildlife biology and bioarchaeology as a method for determining age at death (Charles et al. 1986; Condon et al. 1986; Kagerer and Grupe 2001). Because of its continued deposition, the analysis of cementum chemistry provides a means of tracking annual life-history changes until death. Outridge et al. (1996) have shown that lead varies by cementum layers (Figure 42).

Instrumentation and Methods of Analysis

One of the challenges of hard-tissue chemical studies is to be minimally destructive and at the same time provide chemical information based on the pattern of development and calcification of enamel and dentin. Until the last few years, two general methods have been used to analyze lead and other elements in dental samples: digestion of whole teeth or major portions of teeth for wet analysis and surface profiling. Neither method provides the much-needed time-specific information. However, in recent years, techniques that do

provide time-specific information have come to maturation. These involve either ablating or microdrilling small areas of hard tissue. We have employed laser ablation to provide elemental information and drilling to provide information on isotopes. The following is a brief description of the instrumentation, coordination of activities, the utility of each methodology, and an overview of the main questions to be addressed.

Instrumentation and Coordination of Samples

Elemental analyses have been carried out utilizing Hampshire College's Inductively coupled plasma mass spectrometer (ICP-MS) (Perkin Elmer Elan 6000A, Shelton, Connecticut) and attached laser ablation (LA) system (CETAC LSX 100, Omaha, Nebraska). The marriage of the high-precision, high-sensitivity, and multielement capacities of a state-of-the-art ICP-MS with the spatial resolution capabilities of laser ablation (LA-ICP-MS) provides us with a unique opportunity to construct detailed maps of elemental concentrations in teeth with minimal sample preparation and minimal destruction. The method is particularly ideal for chronologically developing tissues such as those found in trees, shells, and teeth (Outridge 1996). Our laser ablation system was obtained to study hard tissues.

Tooth samples have also been prepared at Hampshire College and then sent to other laboratories that

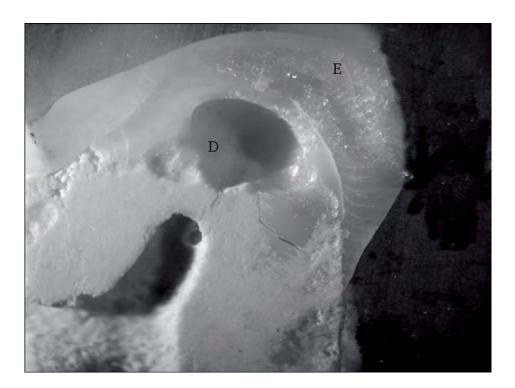


Figure 43. Dremel Drill drilling (Burial 266, LRM1). D = dentine, E = enamel.

specialize in isotopic analyses. In the early stages of research, samples were removed using a Dremel Drill (Figure 43). The results presented below on strontium isotopes are based on enamel and dentin removed by this method and analyzed at the University of Kansas by Doug Walker. In May 2002, we obtained a precision micromill (New Wave Research), allowing us much better control of the location and size of the sample. For example, the micromill allows us the potential to sample multiple isotopic systems at dozens of locations within a single tooth.

The Chemical Tool Kit

The major dietary methods are presented first: elemental strontium, barium, zinc, iron, and carbon and nitrogen isotopes. These are followed by methods for evaluating environmental change: ESA, oxygen isotopes, and strontium isotopes. Finally, we present methods that indicate pollutant exposure and ingestion (lead, arsenic, and mercury, etc.) that might also imply location via anthropogenic sources. We wish to eventually employ multiple chemical methods in order to obtain multiple confirmations of origins and nutrition. However, because of funding limitations, here we focus on results obtained thus far for three methodologies that relate to origins and anthropogenic pollution: ESA, elemental lead, and strontium isotope ratios.

Strontium and Barium

Studied relative to calcium (Ca) concentrations, strontium (Sr) and barium (Ba) concentrations provide a means for evaluating the trophic level of diets. Sr and Ba substitute for calcium in hydroxyapatite, the major inorganic component of all hard tissues. However, Ca is "favored" or enriched over the other two divalent cations because of its smaller size. An enrichment, or fractionation step, occurs as food moves through trophic levels (Figure 44). Therefore, herbivores have more Sr and Ba relative to Ca than primary carnivores, which have more Sr and Ba than secondary carnivores. Thus, ratios of Sr and Ba to Ca have become well established as indicators of the relative portion of meat in diets (Ambrose 1993; Blum et al. 2000; Burton and Price 1990; Gilbert et al. 1994; Runia 1987; Sealy and Sillen 1988; Sillen and Kavanagh 1982).

Because breast-feeding is a higher trophic level than weaning, an increase in Sr/Ca and Ba/Ca ratios in teeth may also be used to pinpoint the age at weaning (Katzenberg et al. 1996). Here, LA-ICP-MS is a particularly excellent methodology. It is one of just a few instruments that can measure Sr and Ba in small, targeted samples, with the needed sensitivity, and can evaluate change in elemental ratios virtually by week. LA spot size can be as small as 10 µm, which is equal to about 2–3 days of enamel development.

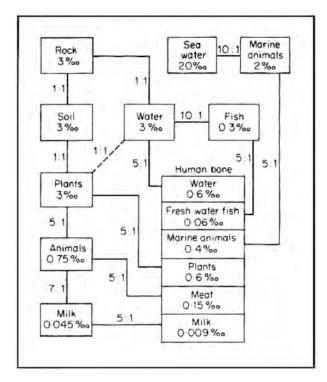


Figure 44. Diagram from Price et al. (1985: 423) showing the five-fold fractionation of Sr/Ca occurring during human digestion, and the contributions to the composite Sr/Ca of bone from various diet components. With knowledge of environmental levels of Sr and Ca and of fractionation dynamics, one can balance the relative input of Sr and Ca into bone or other calcified tissues. Ezzo (1994a; 608) suggests that strontium "is the only firmly established elemental model in bone chemistry analysis." Yet, this is not a simple system, nor has it been fully tested for either bone or dental hard tissues. We propose to test various links in the Sr system and also to use this diagram as a model for study of other systems such as Fe, Ba, Sr and Pb.

Zinc and Iron

Zinc and iron are essential elements that are frequently deficient in diets. Their deficiency may cause a wide spectrum of functional consequences. Both nutrients are key to maintaining linear growth and resistance to infectious disease. Iron also affects cognitive development and work capacity. Although the consequences of these micronutrient deficiencies are often masked by protein-energy malnutrition, deficiencies in these two elements can have severe consequences for the individual, the family, and the social group (Allen 1993; Subcommittee on Zinc, Committee on Medical and Biologic Effects of Environmental Pollutants 1979; Golden 1988; Scrimshaw 1991). Contemporary diets are frequently deficient in one or both of these micronutrients, especially when dietary diversity is low, and meats and fresh fruits and vegetables are limited.

It is highly likely that zinc and iron deficiency were prevalent and consequential to the lives of the enslaved Africans, and it is also likely that their consequences may have been masked by gross protein-energy deficiency. Thus, direct measurement of iron and zinc concentrations will supplement prior analyses of porotic hyperostosis (an indicator of iron deficiency anemia) and bone growth (reflecting overall nutritional status).

Since the 1970s, these elements have been studied in bones and, more recently, in teeth. Ezzo (1994b) warned that interpretations are not unambiguous. We have studied zinc concentrations in deciduous teeth of contemporary Mexican children with known diets during their tooth formation. Our main finding was that enamel zinc concentrations are not related to total zinc intake, but they are strongly associated with factors affecting bioavailability such as phytate and Ca intake (Goodman et al. 2003).

Carbon and Nitrogen Isotopes

The combined analyses of stable carbon isotopes on enamel carbonate, bone carbonate, and bone collagen (respectively, mineral and organic fractions of bone), and nitrogen isotopes on bone collagen, provide data on the macronutrient components of diets, as well as the degree of herbivory versus carnivory. This method can provide distinctions between consumption of different plant groups (e.g., maize versus most other plants); terrestrial, freshwater, and marine resources; and legumes versus other plants. This analysis will (1) help to refine understanding of nutritional (and possibly infectious) diseases in individuals, (2) provide a means of looking at social differences within and between groups, and (3) document major dietary shifts that can be caused by geographic relocation. Paralleling the analysis of oxygen isotopes (described below) and changes in Sr and Ba relative to Ca, nitrogen isotopes can distinguish nursing infants who are one level higher in the food chain than their mothers as well (Katzenberg et al. 1993; Schurr 1997). Lastly, these isotopic data will be integrated with the elemental data (iron, zinc, Sr, and Ba, etc.) from the same tissues to refine our reconstruction of food consumption and nutritional status.

Elemental Signature Analysis

The ICP-MS allows for the simultaneous analysis of a wide suite of elements (approximately 90) and

Table 10. Range of Element Concentrations in Human Dental Enamel

Concentration Range (ppm)	Elements
>1000	Na, Cl, Mg
100–1000	K, S, Zn, Si, Sr
10–100	Fe, Al, Pb , B, Ba
1–10	Cu, Rb , Br, Mo, Cd, I, Ti, Mn, Cr, Sn
0.1-0.9	Ni, Li, Ag, Nb, Se, Be, Zr, Co, W, Sb, Hg
<0.1	As, Cs, V, Au, La, Ce, Pr, Nd, Sm, Tb, Y

Note: Modified from Curzon (1983:5). Elements in bold are research foci. A suite of elements will be used in some studies.

Key: Ce = cerium; La = lanthanum; Pb = lead; Sr = strontium; Rb = rubidium.

their isotopes in semiquantitative mode (Table 10). This methodology provides a rapid assessment of the presence of pollutants and additional elements of possible interest, especially those that might be useful to discriminate subgroups (such as those who grew up in New York vs. elsewhere). For example, results from this mode of analysis may be analyzed with discriminant function or cluster analysis to identify groups of individuals and outliers who may have been migrants. ESA will complement more specific methods noted below for evaluating migration and change in environment.

Strontium Isotopes

The isotopic composition of Sr is widely used in the earth sciences to discriminate between differing geologic terrains and, as a result, may be valuable in tracing the places of birth and early life of the enslaved African. Sr, which has chemical affinities to Ca and concentrates with Ca in hard tissue, appears as four stable isotopes, ⁸⁴Sr, ⁸⁶Sr, ⁸⁷Sr and ⁸⁸Sr. ⁸⁷Sr is the decay product of the long-lived radioactivity of 87 rubidium (Rb); with time, the proportion of ⁸⁷Sr to total Sr grows at a rate dependent on the available Rb. Geologic environments rich in Rb relative to Sr will undergo large increases in the ratio⁸⁷Sr/⁸⁶Sr, and regions of the earth with low Rb/Sr ratios will retain low values of ⁸⁷Sr/⁸⁶Sr for long periods of geologic time. Because Rb is a particularly weak-bonding element in the high temperatures of the earth's interior, it has been flushed to the surface through volcanic activity over time and has been concentrated in the continental crust. Stronger-bonding Sr is less fractionated and remains in higher concentration in the earth's interior.

As a result, old continental rocks have developed high ⁸⁷Sr/⁸⁶Sr, and volcanic islands, recently formed by partial melting of the Rb-poor mantle of the earth, have dramatically lower ⁸⁷Sr/⁸⁶Sr. The ⁸⁷Sr/⁸⁶Sr ratios in the teeth and bones of humans whose food and water are locally obtained should reflect the ⁸⁷Sr/⁸⁶Sr ratios of their environment.

Continents typically consist of regions of ancient rock (cratons) stitched together by zones of younger mountains created during relatively more recent continental collisions. West Africa is typical in that a zone of approximately 600-million-year-old mountains (in Nigeria) lies between very old (more than 2 billion years) cratons to the west and to the south. 87Sr/86Sr in the cratons will be very high, and the mountains created in more recent times will have a contribution from the earth's interior and have lower 87Sr/86Sr. The strongest potential differences in 87Sr/86Sr will exist between the cratons of Africa (with a ⁸⁷Sr/⁸⁶Sr ratio often above 0.80000) and the young volcanic rocks of the Caribbean, particularly the modern volcanic rocks of the outer Antilles (with 87Sr/86Sr ratios in the range of 0.7020–0.7040).

Cuba, Dominica, and the western islands of the Caribbean have a continental component and should be distinguishable from the younger, more fully mantle-derived volcanics of the outer Antilles. Because modern ⁸⁷Sr/⁸⁶Sr analytical procedures produce ratios that are resolvable to the sixth figure beyond the decimal place, there is great potential for finer discrimination among populations. Figure 45 provides a general sense of the geographic pattern of Sr isotope ratios.

As with the other provenance methods, analysis will focus on a life-span perspective with separate analyses of bone and different teeth and parts of teeth

87Sr/86Sr in non-carbonate sediment and river water 0.71-0.74 0.82-0.94 0.72 0.72 0.72 0.710 0.709 0.72 0.71 0.71 0.71 0.72-0.74 0.71 0.73 0.715-0.733 0.70 0.71 0.72 0.71 0.72 0.71 0.71 0.71 0.72 0.711 0.71 0.72

Figure 45. Broad geographic pattern of strontium isotope distribution. Data from Dasch (1969), Allegre et al. (1996), Goldstein and Jacobsen (1988), Palmer and Edmond (1992), and Huh and Edmond (1996).

that calcify at different times in life. Thus, it may be possible to pinpoint the age of an individual at time of movement from one location to another and any subsequent movement.

Oxygen Isotopes

Oxygen isotope analysis has recently been developed for bone and enamel phosphate (White et al. 2002; Wright and Schwarcz 1998). In contrast to carbon isotopes, which are based on the premise that "you are what you eat," oxygen isotope analysis is based on the premise that "you are what you drink." Values in our body fluids reflect those of the water we drink, and the values of environmental water are a function of complex physiographic and climatic variables including temperature, humidity, rainfall, distance from the ocean, and altitude. By analysis of teeth that have formed at different ages in life, it is possible to estimate the age at which individuals moved from one environmentally distinct region to another. As in other analyses, bone values reflect more-recent and final locations.

This methodology has been employed on ice cores from Greenland to plot annual changes in the earth's temperature. Oxygen isotope ratios are sensitive to minor changes in ambient temperature. White et al. (2002) have employed this isotope to discriminate

between individuals who grew up at Teotihuacán, in the Valley of Mexico, and those who may have grown up at Monte Alban, Oaxaca, and in the Maya highlands farther to the south. Oxygen isotopes should distinguish with great fidelity individuals who grew up in a tropical area (West Africa and Caribbean) from those who grew up in a more temperate zone (New York). In trying to pin down the possibilities of a two-step migration from Africa to the Caribbean to the United States, this method perfectly complements the analysis of Sr isotopes.

Because nursing infants are one level higher in the food chain than their mothers, their oxygen isotopic ratios are enriched. Because the balance of protein, fat, and carbohydrate is unique in nursing children, the difference between the collagen and carbonate values is much smaller than it is in adults in the same population. These techniques allow us to tell how long the nursing period lasted and how prolonged the weaning period was.

Environmental controls—that is, water and tooth samples from present-day or historical-period inhabitants of New York and areas where the enslaved African may have lived—are crucial to take maximum advantage of oxygen isotope results. Oxygen isotopes without environmental controls can identify outliers and the number of movements (useful information in itself). But without control data, it cannot identify

location of origin. To establish a baseline for the location of an individual, a contemporary or archaeological bone or tooth sample (either human or animal) can be used, along with water samples. Suspected locations of origin would be similarly sampled.

In summary, oxygen isotope analysis, when combined with insights from analyses of ethnohistorical information and other chemical and DNA analyses, may provide a powerful tool for locating regions from which individuals may have moved. Oxygen isotope analysis can be used to specifically test hypotheses derived from other analyses.

Lead, Lead Isotopes, and Heavy Metal Pollution

Lead has frequently been studied in deciduous teeth to track current lead exposures and in bones to provide a history of pollution exposure (Aufderheide et al. 1988; Budd et al. 1998; Fergusson and Purchase 1987; Gulson and Wilson 1994; Purchase and Fergusson 1986; Shapiro et al. 1972). Based on bone lead levels and historical documentation, Corruccini, Aufderheide, et al. (1987) have suggested lead poisoning from rum intake and inhalation of fumes during sugar manufacturing was an "unrecognized epidemic" in the Caribbean during the seventeenth and eighteenth centuries that would have affected both enslaved African and white health and mortality.

By using LA–ICP-MS, we can pinpoint the age and chronological nature of exposure to pollutants (Evans et al. 1995; Outridge 1996; Outridge et al. 1995). Such data provide insights into maternal exposure (via analysis of deciduous teeth), occupations, and movement. The analysis of lead isotopes provides a means to evaluate the potential source of lead (as each source has a unique isotopic signature), and this method, too, may be used to evaluate change in location. Gulson et al. (1997) found that differences in lead (Pb) isotope ratios (207Pb/206Pb and 206Pb/204Pb) of permanent and deciduous teeth enabled distinction between immigrants and long-term residents in Australia; they hypothesized that observed differences in blood-enamel and blood-dentin isotope exchange rates may be used to estimate individuals' residence time in Australia.

Methods and Results

In this section, we first review the working hypothesis that individuals with CMT were African born. This hypothesis sets up the expectation that individuals with modified teeth might chemically cluster differently from individuals who died in the first decade of life and are assumed to be New York born. We then test this hypothesis by ESA and Sr isotope analysis.

African Cultural Modification of Teeth

The practice of intentionally modifying teeth spans thousands of years and is geographically widespread. Morris (1998) noted that dental chipping and intentional removal was observed in Early Iron Age (ca. 1500 years B.P.) skeletal remains from southern Africa. Britain, India, China, Southeast Asia, Japan, the Malay Archipelago (including the Philippines and New Guinea), Australia, Oceania, the Americas, Hawaii, Grenada, and the Virgin Islands have also produced excavated, culturally altered dentitions (Milner and Larsen 1991). With declining prevalence, members of some societies—notably in Africa, although elsewhere—continue to alter their physical appearances by decoratively filing, chipping, ablating, or otherwise modifying dentitions (Inoue et al. 1992; Inoue et al. 1995; Jones 1992; Milner and Larsen 1991; Morris 1998). Although culturally (i.e., intentionally and nontherapeutically) modified teeth "indicative of different ways of life" have long interested anthropologists, Milner and Larsen (1991:357) noted that studies tend to be "particularistic, frequently focusing on single specimens or skeletal series from a certain site," and reflect the discipline's "descriptive phenomenologically oriented tradition." Recent work, however, considers dental modification as a "biocultural attribute," possibly linked to "social distinction" and "cultural integration" at pre-Hispanic Mayan archaeological sites (Tieslerbos and Frausto 2001:149) and social status among pre-contact Guamanians (Ikehara-Quebral and Douglas 1997).

Anthropologists have offered different explanations linking cultural dental modification and African birth. Stewart and Groome (1968) suggested dental modification would have seemed "hostile" to European slaveowners, who, as a result, would have prohibited its practice whenever possible. Handler and coworkers' (1982) analysis of the late-seventeenth- to early-nineteenth-century Newton sugar plantation cemetery in Barbados included a more complex explanation based on integrated archaeological, bioanthropological, and ethnohistorical data. Although European traders in West Africa regularly commented on African cultural practices as "heathenish" or "savage," Handler and coworkers (1982) suggested scarce documentary refer-

ence to dental modification in colonial settings makes it difficult to reliably assess slave owners' perceptions of the practice as "hostile" or otherwise problematic. In fact, where dental modification is mentioned—that is, in runaway advertisements, it is for the purpose of enhancing descriptions of African escapees in order to facilitate their recognition and recapture.

Handler and coworkers (1982) noted that runaway attempts were frequent in the Caribbean and other parts of the New World during this period. Interestingly, they further noted that posters to help find the runaways with modified teeth invariably included reference to African birth in the form of cultural attributes such as cicatrization (or "country marks") or through ethnic distinctions of varying precision such as "Ibo" or "Coramantine." Handler (1994) offered further support for this hypothesis in the form of similar findings from British colonial North America, noting that contemporaneous runaway advertisements from Georgia, Maryland, Virginia, and North and South Carolina also mention dental modification only with respect to individuals whom slave owners believed to be African born. Like Stewart and Groome (1968), Handler and coworkers (1982) and Handler (1994) have suggested that African dental modification indicates an African birth, as the practice was most likely discontinued in the Americas. However, following Price and Price's (1972) discussion of cicatrization in Suriname, Handler and coworkers (1982) and Handler (1994) have argued that, unlike more easily hidden or coded African cultural practices, dental modification was voluntarily discontinued because of its highly visible, "immutable and indelible" results—that is, as "an adaptive response" enabling greater anonymity during escape efforts.

If fleeing enslavement was central to cultural reasoning that concluded dental modification was maladaptive in the New World, one might still expect this practice to be more visible in the bioarchaeological record. This is because of the prevalence of dental modification in those areas from which most enslaved Africans were extracted during the period of the transatlantic trade (Table 11), as well as the fact that most enslaved persons apparently did not attempt escape. Although Handler and coworkers (1982) correctly noted that many did, the majority of enslaved Africans engaged in often more-subtle forms of resistance, such as working slowly, intentionally breaking tools to disrupt production, or maintaining African cultural practices. In such contexts, dental modification may have taken on importance as a marker of social identity in the Americas, perhaps even more acute than seen generally in Africa, where its meanings were sometimes sacred, but sometimes superficial (van Rippen 1918).

The ethnohistoric component of Handler's (1994) hypothesis obscures this possibility and limits the practical relevance of his analysis to those members of the enslaved population that anticipated escape. Thus, runaway advertisements, although useful, are not directly relevant for testing connections between an African birth and dental modification for most archaeologically recovered African Diasporan remains. As well, early ethnographic accounts, occupied primarily with describing modification patterns, are of limited use for estimating birthplace, because those patterns often are not geographically confined. Table 12 makes this point with respect to modification patterns observed at the New York African Burial Ground. Chemical analyses should more reliably assess the nature of such connections for a greater number of individuals and possibly provide clues for understanding dental modification's limited presence among African Diasporan populations.

Geographic birthplace among enslaved Africans with CMT has been chemically estimated before, with low skeletal-lead content relative to age interpreted as an indicator of African birth at the Newton Plantation (Corruccini, Aufderheide, et al. 1987). More recently, Sealy and colleagues (1995) analyzed bones and teeth to shed light on an understudied dimension of the transatlantic slave trade: Africa's internal diasporas produced through involuntary migration. Sr, carbon, and nitrogen isotopic variation proved useful for establishing nonlocal origins and dietary patterns of individuals, some enslaved and bearing dental modifications, buried during the eighteenth and nineteenth centuries along the coast of Cape Town, South Africa (Cox and Sealy 1997; Cox et al. 2001).

We combined LA-ICP-MS ESA and Sr isotopic analyses to analyze permanent first and third molars (and one central incisor) from a total of 40 modified adult and nonmodified subadult teeth excavated from the New York African Burial Ground. ESA is based on the incorporation into enamel of elements that are not nutritionally essential and not directly bioregulated. These nonessential elements may be used to estimate the relative geographic relatedness of individuals during tooth formation and to identify possible clusters among and between modified and nonmodified individuals. Because they are not actively physiologically regulated, elements such as

Table 11. African Dental Modification Patterns

- A. Filing mesial maxillary central incisors (Guinea, Togo, Angola, Democratic Republic of the Congo, Uganda, Kenya and Tanzania)
- B. Filing mesial and distal of maxillary central incisors (Guinea, Central African Republic, Democratic Republic of the Congo, Angola)
- C. Filing six maxillary anterior teeth to pointed shape (Democratic Republic of the Congo, Zimbabwe)
- D. Filing four maxillary and four mandibular incisors to pointed shape (Guinea, Cameroon, Republic of the Congo)
- E. Horizontally filing maxillary central incisors (Guinea, Democratic Republic of the Congo)
- F. Centrally notched incisors (Sierra Leone)
- G. Serrated incisors (Mozambique)
- H. Mesial triangular notch cut in gingival one-third of central incisors (Republic of the Congo, Sudan)
- I. Concave filing of maxillary incisor, convex filing of mandibular incisors (Tanzania, Mozambique)
- J. Extracting maxillary central incisors (Zambia)
- K. Extracting mandibular central incisors (Uganda, Kenya)
- L. Extracting primary mandibular canines (Democratic Republic of the Congo, Sudan, Uganda)
- M. Extracting four maxillary incisors (South Africa)
- N. Extracting four mandibular incisors (Sudan)
- O. Extracting four maxillary and four mandibular incisors (Democratic Republic of the Congo, Uganda)
- P. Extracting single lateral incisor (South Africa)
- Q. Artificial prognathism with facially flared maxillary central incisors (Senegal, Kenya)

Note: From Gould et al. (1984).

lead reflect anthropogenic landscape interactions and patterned pollutant exposure. By comparing early- and later-developing enamel, we are able to more directly consider natal age as well as identify possible migration patterns observed as shifting first- and third-molar elemental signatures.

This study provides chemical evidence for identifying the birthplaces of the New York African Burial Ground individuals with modified and nonmodified teeth, while piloting the bioarchaeological application of LA–ICP-MS ESA. Cultural dental modification is considered here in biohistorical context as an archaeo-

^a Maxillary in diagram.

Table 12. NYABG Modification Patterns with African and African Diaspora Reference Populations

Modification Pattern	Burial Number(s)	Referenced Population(s)	Reference(s)
Wave (incisors and canines)	47	none	none
Wedge (central incisors)	23	Cuba via Congo (Bakongo); SW Angola (Ngumbi); Cape Town via SE Africa (Makua, Maravi and Yao)	Cox and Sealy 1997; Ortiz 1929; Wentzel 1961
Mesial filing (incisors)	6, 114, 326, 366, 377	S Angola (Owampo) and N Namibia (Damara); Virgin Islands	Buxton et al. 1938; von Ihering 1882
Distal chipping/filing (incisors)	101, 241, 367, 397	Barbados	Handler et al. 1982
I ¹ , I ² mesial, distal chipping/ filing	68, 194, 243, 403	Grenada; Cuba via Congo (Loango)	Ortiz 1929; Stewart and Groome 1968
I ¹ , I ² mesial, distal with C ¹ mesial chipping/filing	115, 384	none	none
Point (incisors)	9, 106, 151, 192	Barbados; Cuba via Congo Calabar); Gold Coast (Ashanti, Aksin)	AMNH; Ortiz 1929; Stewart 1939
Blunt point (incisors)	266, 270, 340	Southern Dem. Republic of Congo	Torday 1919
Hourglass (incisors)	281	Dem. Republic of Congo; Barbados	Handler et al. 1982; Lignitz 1919– 1920
General (occlusal) chipping/ filing (incisors)	165	none	none

Key: AMNH = American Museum of Natural History; C^1 = upper canine; I^1 = upper first incisor; I^2 = upper second incisor *Note*: Modified from Blakey (1998b).

logically retrievable biocultural practice. That is, dental modification is an example of how humans modify and reshape physical features to communicate cultural meaning and expression. Where such practices affect the bones and teeth, they take on added importance for the reconstruction of lived experience.

The New York African Burial Ground sample is unique in that the number of observable modified dentitions (n = 26) yielded by its excavation is the largest associated with an African Diaspora population to date. The site is also a window onto colonial Africans' under-explored northern experiences. Chemical estimation of birthplace addresses the first of four primary questions developed by researchers in collaboration with the skeletal population's descendant (i.e., New York's African American) community: what are the geographic (and/or) ethnic origins of the population? We also implicitly test Handler's (1994) conclusions, based largely on ethnohistori-

cal data, with biochemical analytical methods that are potentially applicable to other African Diaspora skeletal populations.

Beyond its absence or presence as a cultural "retention" or "survival," dental modification observed among African Diasporans may provide direct evidence of African origins and childhood, and a means of assessing African and American health environments. To date, Handler's (1994) work at the Newton Plantation in Barbados has most thoroughly explored the meaning of African dental modification in the Americas, concluding that its presence likely indicates African birth. However, Handler's (1994) hypothesis is limited by its emphasis on escape from enslavement as an impetus to discontinue dental modification. We employed chemical analysis in the form of LA-ICP-MS ESA to estimate African birth among modified and nonmodified individuals from the New York African Burial Ground in an effort to further

NYABG Nonmodified Subadult NYABG Modified Adult Ghanaian and Other ID (Age Ranges [in years], ID (Age Ranges [in years], Tooth Tooth ID Tooth Burial 6 (25–30, M) LLM1 Burial 7 (3–5, N/A) **CREGEG** LRM1 LRM1 LLM1 Burial 22 (2.5-4.5, N/A) LRM1 Burial 9 (35–45, M)^a LRM3 Burial 35 (8–10, N/A) ULM1 Burial 9 (35–45, M)^a Burial 23 (25–35, M) URM1 Burial 39 (5–7, N/A) LRM1 Burial 47 (35–45, M)⁸ LLM1 Burial 43 (2.5–4.5, N/A) LRM1 **CREGDO** LLM1 Burial 47 (35-45, M)⁸ LRM3 Burial 45 (2.5–4.5, N/A) LRM1 Burial 101 (26–35, M)⁸ LRI1 Burial 55 (3–5, N/A) URM1 Pig molar associated molar with Burial 137 LLM3 Burial 126 (3.5–5.5, N/A) LLM1 Burial 101 (26–35, M)^a Burial 106 (25-35, PF) LRM1 URM1 Burial 138 (3–5, N/A) LRM1 Burial 115 (30, F) Burial 160 (3.5–5.5, N/A) LLM1 Burial 165 (16+, I) LLM1 Burial 167 (8.5–12.5, N/A) LRM1 Burial 266 (25–35, F) URM1 Burial 169 (5.5–9.5, N/A) LRM1 Burial 270 (16+, M) LLM1 Burial 180 (11–13, I) ULM1 Burial 281 (16+, M) ULM1 Burial 219 (4-5, N/A) LRM1 Burial 340 (39.3-64.4, F)^a LRM1 Burial 236 (4–5, N/A) LLM1 Burial 244 (5–9, N/A) LRM3 LLM1 Burial 340 (39.3–64.4, F)^a Burial 366 (34–62, I) LLM1 Burial 286 (4.5–8.5, N/A) LLM1

Table 13. NYABG Chemical Analysis Sample

Key: For "Sex": F = female; PF = probable female; I = indeterminate; PM = probable male; M = male; N/A = not applicable. For "Tooth": LLM1 = lower left first molar; LLM3 = lower left third molar; LRM1 = lower right first molar; LRM3 = lower right third molar; ULM1 = upper left first molar; URM1 = upper right first molar; LRI1 = lower right first incisor. *Note:* Age is given in years.

Burial 304 (3-5, N/A)

Burial 405 (8, N/A)

ULM1

understand this population's origins and to establish a more widely applicable means of testing Handler's (1994) findings.

Burial 367 (25-35, F)

Materials and Methods Sample Selection and Preparation

LA–ICP-MS ESA was applied to 40 teeth. Thirty-seven teeth from New York African Burial Ground individuals included a permanent first molar from 13 modified adults and 19 nonmodified subadults; a permanent first incisor from 1 modified adult (Burial 101);

and a third molar from 4 modified adults. Additionally, an intrusive pig tooth found with Burial 137 was analyzed for its presumably New York values, as were 2 permanent first molars from individuals excavated in coastal Ghana in order to provide possible examples of "West African" trace-elemental profiles (Table 13). As we show below, our assumption that the pig tooth came from a local pig is no longer justified based on its high Sr isotope ratio, which suggests that the tooth came from an African-born pig.

LRM1 URM1

Burial 101 was included despite his lack of a permanent first molar because his analysis offered the opportunity to compare chemical findings with skeletal biological data suggestive of time spent in

^a These individuals were analyzed for early- and later-forming enamel (two teeth were sampled).

Africa—that is, possible evidence of yaws in the form of platycnemia and striated lesions observed on the tibiae. Also, the presence of what appears to be an Akan Adinkra ("Sankofa") symbol tacked to Burial 101's coffin lid reflects perhaps the most ethnolinguistically specific material-culture evidence recovered from the site. The Ghanaian individuals were excavated in Eguafo (Tooth ID No. CREGEG) and Dominase (Tooth ID No. CREGDO) villages during the summer of 2000 as part of ongoing archaeological research into the dynamics of early West African and European "culture contact" in coastal Ghana's Central Region (see DeCorse 2001).

Sample preparation proceeded as follows. Teeth were first soaked for 2 days in distilled, deionized water and brushed to remove loose debris. Organic material was removed with a 2-day soak in a 1 percent papain solution, after which teeth were thoroughly rinsed with distilled, deionized water. Following a 30-second, 3 percent (v/v) hydrogen peroxide bath for removal of inorganic material, teeth were rinsed and soaked again for 2 days in distilled, deionized water. Upon drying, teeth were embedded in Buehler Epoxide Resin with the procedure detailed by Marks et al. (1996). However, teeth were secured in plastic containers with glue instead of copper wire. Two bucco-lingual thin sections approximately 0.20-0.25 mm in thickness were made with a diamond-coated copper blade affixed to a low-speed Buehler Isomet cutting unit for histological analysis. The exposed surface of the embedded tooth and the thin sections were etched with 1M hydrochloric acid. Embedded teeth were polished, cleaned with acetone, and rinsed with distilled, deionized water just prior to ablation. All glassware was cleaned with 50 percent (v/v) nitric acid and rinsed three times with distilled, deionized water.

Sample Collection and Analysis

Selected teeth were ablated with a 266 nm UV-pulsed Nd:YAG laser (CETAC, LSX 100, Omaha, Nebraska). Trace elemental intensities (counts per second, or cps) were determined by ICP-MS (Perkin-Elmer Sciex, Elan 6000a, Norwalk, Connecticut). Semiquantitative analytical software (TotalQuant II, Perkin-Elmer, Norwalk, Connecticut) was employed to determine intensities of 64 elements across a mass range of 40.078 (Ca) to 204.383 (bismuth [Bi]), and including 232.038 (thorium [Th]) and 238.029 (uranium [U]).

Before laser ablation of each tooth, response factors stored in TotalQuant II were updated to reflect

instrument sensitivity under current operating conditions by external calibration with National Institute for Standards and Technology (NIST) standard reference material (SRM) trace elements in glass (NIST SRM 612). SRMs are matrices containing certified or known major and trace elemental compositions for a given material used in the development of chemical methods of analysis for trace elements. Certified and known values are both used for calibration in semiquantitative analysis, but only certified values necessarily reflect agreement between two or more methods or laboratories and thus are more reliable (NIST 1992). The glass matrix (NIST SRM 612) was used because currently there is no enamel hydroxyapatite SRM, which would more closely approximate human tooth elemental composition.

Following optimization of the operating conditions of the ICP-MS for TotalQuant II analysis, calibration and sample collection were performed as follows. First, an argon blank was run as a procedure blank. Next, NIST SRM 612 was ablated as an external standard, with certified/known concentration values of iron (Fe), nickel (Ni), Rb, Sr, lanthanum (La), Pb, and Th used to construct a calibration curve covering the desired mass range. The NIST SRM 612 was then ablated as a sample, and found and certified/known values were compared in order to evaluate the calibration (Table 14).

Upon verifying accuracy, teeth were ablated as samples. At least two 2.5–3.0-minute raster-pattern ablations were conducted for most teeth and, whenever possible, from earliest-formed enamel (i.e., from the cusp or occlusal area) in order to increase the likelihood of analyzing natal landscape interaction (Figure 46). Another calibration was then performed prior to ablation of the next tooth. Counts per second (or intensities) for nonessential, nonbioregulated elements measured within semiquantitative range—Rb, Sr, La, cerium (Ce), and Pb—were averaged and interpreted with SPSS 11.0 hierarchical cluster analysis as representations of individuals' relative relatedness. For a detailed discussion of calibration and other theoretical and methodological issues concerning semiquantitative ICP-MS analysis, see Amarasiriwardena et al. (1997) (although their research involved liquid nebulization sampling).

Results

The cluster diagram (Figure 47) includes the following information from left to right: (1) four main

Table 14. ICP-MS External Calibration Results for NYABG Burial 6 Lower Left First Molar

Element	NIST SRM 612 Concentration (ppm by weight)		%ΔΕ
Element	Found	Certified/Known	- γοΔΕ
Ti ^a	0.083	(50.1 ± 0.8)	-99.830
Mn	30.175	(39.6 ± 0.8)	-23.800
Fe	46.099	51 ± 2	-9.600
Co	29.121	(35.5 ± 1.2)	-17.969
Ni	33.331	38.8 ± 0.2	-14.095
Cu	33.205	(37.7 ± 0.9)	-11.923
Rb	29.061	31.4 ± 0.4	-7.449
Sr	75.738	78.4 ± 0.2	-3.395
Ag®	5.642	22.0 ± 0.3	-74.360
Ba	56.424	(41)	37.620
La	32.249	(36)	-10.419
Се	35.407	(39)	-9.213
Nd	29.498	(36)	-18.061
Sm	26.344	(39)	-32.451
Eu	28.616	(36)	-20.511
Gd	20.648	(39)	-47.056
Dy	19.722	(35)	-43.651
Er	19.931	(39)	-48.895
Yb	23.701	(42)	-43.569
Au ^a	0.146	(5)	-97.080
Tl	12.025	(15.7 ± 0.3)	-23.408
Pb	32.957	38.57 ± 0.2	-14.553
Th [®]	13.120	37.79 ± 0.08	-65.282
U ^a	4.557	37.38 ± 0.08	-87.809

Note: $\%\Delta E$ = (Found concentration – certified or known concentration)/certified or known concentration x 100. () = informational, uncertified value. Certified/known range of concentrations is equal to the larger value of entire range of observed results or those within 95 percent confidence interval (NIST 1992).

clusters or statistical groupings (C1, C2, B1, and A); (2) burial number or sample and tooth sampled; (3) sex; (4) estimated age in years; (5) presence and type of dental modification; and finally (6) the cluster linkages. The lengths of the arms linking the clusters represent the estimated geochemical distance between individuals or groups (clusters). For example, the

greatest distance is found between Burial 165 and the remaining individuals.

As just noted, the analysis produced a first division between Burial 165 (labeled cluster A, bottom), and the remaining individuals were subsequently divided, first separating cluster B1 from the remaining individuals, then subdividing cluster C1 from C2.

^a Percent of error is below semi-quantitative range (% $\Delta E \pm 30$ –50).

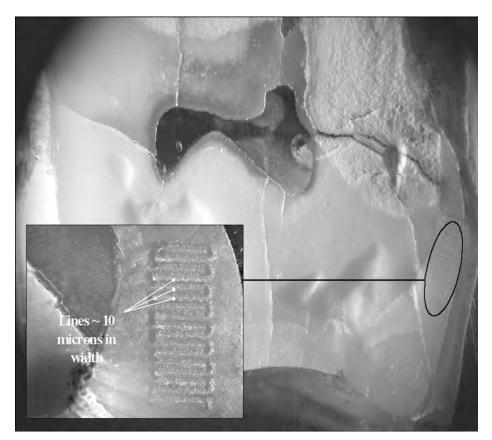


Figure 46. Raster ablation (Burial 23, URM1)

The interesting result concerns which individuals were designated to each cluster. Cluster B1 consists of nine teeth representing nine individuals, from Burial 160 to Burial 219 (see Figure 47). All of these individuals died before 8 years of age. Cluster B1 appears to be a natal New York cluster.

Cluster C2 includes 14 individuals, represented by 16 teeth, starting with Burial 266 and ending with Burial 22 (see Figure 47). The 16 teeth include 2 teeth from Ghana, the intrusive pig molar, and 13 teeth (representing 11 individuals) from the burial ground. Two individuals in this cluster, Burials 9 and 340, were represented by a first molar (M1) and a third molar (M3). With the exception of Burial 22 at the bottom of the cluster, all of the New York African Burial Ground individuals in Cluster C2 displayed dental modifications. These results suggest that the individuals in this cluster were born in Africa.

Cluster C1 is more mixed than the others. There are 14 teeth representing 13 individuals in this cluster; Burial 101 is represented by two teeth. The majority of the teeth, 9 individuals represented by 9 teeth, were from children without dental modifications. Five other teeth were from 4 individuals

(Burials 47, 101, 106, and 6) with CMT. Finally, Burial 47 is represented in this cluster by its first permanent molar and in the C2 (African natal) cluster by its third permanent molar. This cluster switch is intriguing, as it suggests a movement from an as-yet unknown area.

In summary, ESA, a first methodology, has successfully separated the majority of individuals, as represented by teeth, into coherent clusters. This helps affirm the utility of the method, on one hand, and that young individuals were indeed born near New York while the majority of individuals with modified teeth were African born.

A key implication of these data is that, depending on how they cluster, it may now be possible to determine the broad geographic birthplace of older individuals without modifications. However, some interesting questions remain before we can take this next step with confidence. Why does Burial 22, an individual that died at 3.5 years of age, cluster with African-born individuals? And why do four individuals with dental modifications cluster with nine young individuals without modifications? One complication is that the chemistry of a first molar may partly

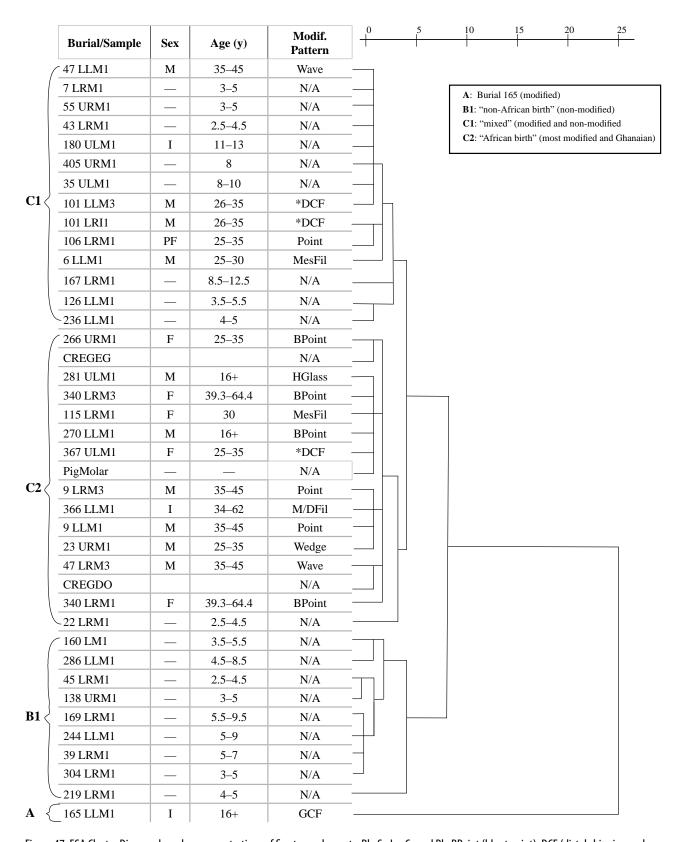


Figure 47. ESA Cluster Diagram based on concentrations of five trace elements: Rb, Sr, La, Ce and Pb. BPoint (blunt point); DCF (distal chipping and filing); GCF (general chipping and filing); M/D Fil (mesial and distal filing); MesFil (mesial filing).

reflect the chemistry of the mother's environment if the mother loses bone apatite during breast-feeding. Another hypothesis is that dental modification continued in New York. Our hope is that another method will help resolve alternative hypotheses.

Strontium Isotope Ratios

As previously noted, the ratio of ⁸⁷Sr to ⁸⁶Sr has emerged as a powerful method to distinguish the age of landscapes. Because the isotopes are not fractionated in biological tissues, the tissues of animals living on these landscapes reflect the landscapes.

Methods and Materials

As in the ESA analysis, for this pilot or testing study we selected teeth from dentally modified individuals as well as teeth of young individuals from the New York African Burial Ground. In most cases, analyses focused on the first permanent molars, which develop during the first few years of life. All samples were obtained by drilling dentin and enamel using a Dremel tool and stainless steel bits (see Figure 43). The bit was thoroughly cleaned with water in an ultrasonic bath and visually inspected under a microscope for contamination between samples. Analyses of replicate drill samples from the same tooth suggest contamination by the bit and cross-contamination between samples was negligible. Powder was collected and placed in an ultraclean teflon beaker with approximately 1 mL of 7M HNO₃. The beaker was sealed and placed on a hot plate at 100°C overnight for dissolution. After cooling, the beakers were opened, returned to the hot plate, and evaporated to dryness. The sample was cooled and dissolved again in 600 µL 3.5M HNO₃ in preparation for isolation of Sr. All samples were centrifuged prior to column chemistry; however, no solid residue was ever observed. Sr was separated using standard, Sr-specific crown-ether resin chromatographic techniques. Columns used had a total column volume of approximately 35 µL. Rinsing was done with 3.5M HNO₃, and Sr was eluted with water. Total procedural blanks during analysis were less than 100 pg Sr and comprise a negligible portion of the Sr analyzed. Separated Sr was dried in H₂PO₄ and loaded onto single rhenium (Re) filaments using a TaCl_e emitter solution for analysis. Analysis was accomplished on a VG Sector (University of Kansas analyses) and Sector-54 (University of North

Carolina, Chapel Hill analyses) thermal ionization mass spectrometer. Both labs used identical 3-cycle dynamic Sr analysis routines, and all data were normalized to $^{86}\text{Sr}/^{88}\text{Sr} = 0.1194$. Replicate analyses of NIST-987 yielded $^{87}\text{Sr}/^{86}\text{Sr} = 0.710262 \pm 0.000009$ (2 σ).

Results

Results are reported as the ratio of ⁸⁷Sr to ⁸⁶Sr (Figure 48). Although results appear to tightly cluster around 0.710–0.720, the method was accurate to six significant figures. Thus, it may eventually be possible to suggest that a difference as small as 0.710450–0.710460 is meaningful.

Figure 48 provides a summary of results. The ⁸⁷Sr/⁸⁶Sr ratio is plotted on the y-axis, and individuals span across the x-axis. Approximate ages are at the bottom and in boxes are the individuals' ⁸⁷Sr/⁸⁶Sr ratios with enamel represented by open circles and dentin represented by dark diamonds. Individuals lacking decorative dental modifications are on the left and the individuals with decorative modifications are toward the center; the Ghanaian teeth, Ghanaian well water, and the intrusive pig molar are located on the right.

Enamel

Based on prior geological studies and the clustering of young individuals, the "local" Manhattan ⁸⁷Sr/⁸⁶Sr value is likely to be approximately 0 .711–712. And, in fact, most young and nonmodified individuals (left side of figure) have both enamel and dentin values that cluster in this range.

On the other hand, the Ghanaian teeth and waters and the intrusive pig have much higher ⁸⁷Sr/⁸⁶Sr values. The highest ⁸⁷Sr/⁸⁶Sr found was from a river sample collected in Ghana, with value over 0.735. All of these samples have significantly higher Sr isotope ratios than those found in those born in New York and suggest a wide range of values in Africa. These results are consistent with prior findings.

The individuals with decoratively modified teeth seem to divide into two or even three groups. Many individuals have high enamel values (Burials 106, 165, 6, 241, 266, 9, 367, and 23). Others such as Burial 47, Burial 114, and Burial 270 may be below the Manhattan value, and others (Burials 115, 281, 366, and 101 are, at the moment, indistinguishable from the Manhattan value.

0.740 Ghana teeth & local NYABG non-modified NYABG modified well water (W) individuals individuals 0.735 o enamel W dentine 0.730 106 87Sr/86Sr 0.725 23 6 Q 9 241 WYABG •0 0 CREGD 266 165 0.715 CREGEG Estimated 245 35 30 47.5 23 16+ 48.5

Sr isotopes in NYABG and Ghanaian teeth

Figure 48. Strontium Isotopes Chart: Ratio of ⁸⁷Strontium to ⁸⁶Strontium in samples of enamel and dentine of individuals from the New York African Burial Ground, plus two individuals from Ghana; water from Ghana; and an intrusive pig molar (recovered with Burial 137).

Dentin vs. Enamel

Dentin values relative to enamel values provide some potential insights. In all of the young individuals without dental modification, the dentin values are close to the enamel values, suggesting little movement or migration during life. On the other hand, the Ghanaian dentin values are high relative to the enamel values, suggesting possible movement to the African interior.

Most interesting is that all individuals with enamel ratios above the suggested Manhattan range have dentin values that are closer to the Manhattan range. This suggests that dentin may be chemically equilibrating to the lower Manhattan range. Possible explanations for this movement of dentin toward the Manhattan range might be either postmortem diagenesis, the incorporation of vital secondary dentin, or changes in primary dentin chemistry during life. In the future, we intend to test among these different explanations because

they have different implications for the interpretation of dentin chemistry.

Enamel Strontium Isotopes Ratios Compared to Elemental Signature Analysis

The combined results of two independent sourcing methods suggest the following. First, the vast majority of young individuals cluster together in both methods. This suggests that they indeed spent all of their short lives in and around New York. Similarly, most individuals with modified teeth cluster together in both the ESA and Sr isotope studies, suggesting that they spent their early lives in Africa.

A few individuals in particular require further study by more detailed examination of sequentially devel-

80000 Non-modified (avg. 31 114) 70000 60000 50000 40000 30000 Modified (avg. = 4514) 20000 10000 0 167 LRM1 101 LR1 47 LRM3 55 URM1 106 LRM1 80 ULM1 43 LRM1 47 LLM1 105 URM 86 LRM1 69 LRM1 39 LRM1 104 LRM

NYABG ESA Average Pb (82) Intensities

Figure 49. Lead variation. Ranking of intensities of lead in teeth studies for ESA. Teeth from individuals with dental modifications (dark bars) tend to have low lead levels compared to individuals without dental modifications (white bars).

oping enamel and dentin by the above methods and new methods. For example, Burial 101 falls within the range of the New York born on both methods, suggesting the possibility that this individual's teeth were modified in the Americas. On the other hand, Burial 106 clearly appears to be African born based on Sr isotopes, but not based on ESA.

Enamel Lead Content

As part of the collection of data for ESA, data were collected semiquantitatively for nutritionally significant elements such as Sr and iron and heavy-metal pollutants such as lead. Here, we provide a brief note on lead variation within the teeth of individuals from the New York African Burial Ground.

Figure 49 presents lead intensities for samples with dental modifications (dark bars) and other individuals. Intensities are ordered from lowest to highest and vary from near nonexistent, less than 100 cps, to over 50,000 cps. The average intensities of lead in nonmodified teeth were over 30,000 cps, compared to an average of fewer than 5,000 cps for modified teeth.

Without a doubt, lead was significantly higher in the teeth of some individuals from the New York African Burial Ground. As part of a broader study, six individuals were analyzed quantitatively for lead concentrations by liquid nebulization—ICP-MS (Webb et al. 2003). Despite the small sample size, it is worth noting that two nonmodified children's (Individuals 304) and 405) whole-tooth lead levels were significantly higher than those of four modified adults (Individuals 47, 266, 340, and 367). Lead levels ranged from 1.2 to 112.2 µg/g (ppm), observed in Individuals 405 and 367, respectively. Although it is as yet unclear precisely how lead levels of different regions in teeth relate to blood levels, 10 µg/dL in blood is above the Centers for Disease Control (CDC) threshold for unsafe lead levels. A concentration in whole teeth of over 100 ppm is undoubtedly unsafe and would have neurological and behavioral consequences (Purchase and Fergusson 1986).

Lead burden variation observed in the New York African Burial Ground sample underscores the need to assess the distribution and biohistorical impacts of elevated lead burden within and across populations. For example, the lead levels in the bones of enslaved

Africans were apparently more variable and generally higher in Barbados than in at least some parts of southern mainland North America. Corruccini, Aufderheide, et al. (1987:238) suggested that many enslaved Africans buried at the Newton Plantation experienced "only mild, intermittent symptoms of lead intoxication . . . [while others] probably suffered moderate to severe symptoms." Aufderheide et al. (1981, 1988) associated high bone-lead values from the Clifts Plantation in eighteenth-century Virginia primarily with wealthy white slave owners who ingested "very substantial" quantities of lead via foods stored in relatively expensive, pewter containers. Likely also affected, however, were domestic laborers whose access to such foods and subsequent lead burden would have been greater than that of other enslaved Africans, which is a possible explanation for the high lead content observed for an 18-year-old female (Aufderheide et al. 1988). Rathbun (1987) reported mean bone-lead values intermediate to those from the Caribbean and Virginia studies for African American remains excavated from a nineteenth-century plantation cemetery in Charleston, South Carolina.

As lead is found in enamel formed during the first year or two of life, the public health significance of better understanding the social and biocultural etiology and consequences of lead poisoning becomes even clearer. It is highly likely that lead is transmitted from mother to child through breast-feeding and may even be transmitted prenatally (Schell 1991, 1997). Thus, the distribution of elevated lead levels is in part a reflection of maternal lead burden—a "multigenerational experience" (Schell 1997:72) historically and organically linked to race, residence, and economic status in the United States. Hence, lead poisoning is no longer an "unrecognized" epidemic affecting primarily white landowners. Today, lead poisoning constitutes a "silent" epidemic disproportionately affecting African Americans "hypersegregated" in low-income, urban areas where malnutrition, old housing, and prolonged exposure due to low social mobility maximize lead levels (Lanphear et al. 1996; Needleman 1998; Reed 1992; Weintraub 1997).

This finding of unusually high lead levels among first-generation African Americans, especially in individuals who died at an early age in New York, provides important historical context and leads to a number of important questions. We would like to know the prevalence of lead pollution, the source of the pollution, the age of individuals who were ingesting high lead levels, and whether lead is implicated in their

early deaths. Expanded lead analysis may help to distinguish other groups within the New York African Burial Ground sample whose work environments or status placed them at higher risk for lead poisoning. These would include domestic workers, mine workers, and possibly freed people, some of whom would have had greater access to pewter items (see Aufderheide et al. 1985; McCord 1953).

Conclusions

Preliminary studies of teeth from individuals buried in the New York African Burial Ground confirm that most individuals who died at an early age spent their lives in and around Manhattan, and most individuals with CMT appear to have spent their first decades somewhere in Africa. Sr isotopes also suggest that a few individuals may have spent time in the Caribbean. High lead levels in the teeth of individuals who lived their lives around Manhattan and died at an early age is an entirely new finding.

These pilot studies have significantly furthered our understanding of the lives of the individuals who are buried in the New York African Burial Ground. The results strongly hint at the capability to tell the geographic histories of individuals, along with individual histories of nutrition and pollution exposure. Combined with historical, archaeological, and other bioarchaeological information, additional studies modeled on the ones conducted here will lead to the clearest understanding of enslaved Africans.

Therefore, based on the outcomes obtained in these pilot studies and the experience gained from research on the New York African Burial Ground sample, the New York African Burial Ground skeletal biology team intends to pursue additional funding for future studies¹ that would explore, among others, the following:

- Extension of studies to bone to better understand chemical conditions nearer the time of death
- Establishing the cause of variation in chemistry between enamel and dentin of the same tooth
- Extensive analysis of soils and fauna from New York and possible other natal homes (West Africa

¹ These studies were included in the original research design of the project, and dental samples were collected for this purpose. The GSA reversed its denial of access to dental samples to allow Joseph Jones and Alan Goodman to continue chemical research in 2004 (the editors).

- and the Caribbean) in order to better establish values at possible source locations
- Extension of analyses to other teeth and a finergrained analysis of teeth
- The addition of new methodologies, such as oxygen isotopes, to further resolve natal homes

Acknowledgments

We owe a great degree of gratitude to the descendant community for allowing scientific analyses of the lives of their ancestors. A variety of individuals

helped along the way, including, but not limited to, Lesley Rankin-Hill (University of Oklahoma), Douglas Walker (University of Kansas), Chris DeCorse and Samuel Spiers (Syracuse University), Edward Carr (University of South Carolina), Rhan-Ju Song and Alexis Dolphin (University of Massachusetts), and Christina Spaulding, Ellen Webb, Stephanie Allen and the class of "Archaeology of Enslaved Africans" (NS 134/334, spring 2003) from Hampshire College. The additional financial support for the research presented in this chapter came from a grant to Dr. Alan Goodman from the NSF–Collaborative Research at Undergraduate Institutions (CRUI) program (9978793).

CHAPTER 7

Demographic Overview of the African Burial Ground and Colonial Africans of New York

L. M. Rankin-Hill, M. L. Blakey, J. E. Howson, S. D. Wilson, E. Brown, S. H. H. Carrington, and K. J. Shujaa

Introduction

The origins of Africans in colonial New York and some conditions encountered upon their arrival have been explored in the two preceding chapters. The objective of the current chapter is to reconstruct who these diverse Africans became as a single population/community (that used a common cemetery) once in New York City. This chapter serves as both a historical demographic (based on documents) and paleodemographic (based on skeletal assessments) overview of the structure of the African population of colonial New York.

The overview is based on the synthesis of the research outcomes that is presented in Volume 3 of this series, Historical Perspectives of the African Burial Ground: New York Blacks and the Diaspora which are related mainly to municipal censuses—and the analyses and interpretations of the skeletal biological research team that are concerned primarily with mortality. The goals of the analyses presented herein are to: (1) establish population profiles and demographic trends for the New York African Burial Ground skeletal sample that integrate these two data sets; (2) reveal the New York African population in relation to its surrounding temporal, political, economic, and sociocultural landscape; (3) place the New York African Burial Ground skeletal sample within the biohistorical framework of the African Diaspora in America; and (4) provide a conceptual framework for the archaeological research work.

The research presented in this chapter is not based on a set of hypotheses but instead begins to track relationships among demographic variables and between the demography and historical attributes of this sample. This sample is unique compared to the other African Diaspora skeletal series, differing in such features as sample size, time period, and a regime of urban enslavement. The only ubiquitous demographic trait identified in all series is high infant mortality rates. The political economic, environmental, and sociocultural context of each sample produces a variety of patterns that will be discussed near the end of the chapter. A more comprehensive and etiological discussion of demographic political economy is presented in Chapter 13 of this report. The current chapter is to provide a sufficient demographic background to facilitate the reader's evaluation of the health effects discussed in Chapters 8–13.

This chapter is organized into three sections. The first section presents a brief discussion on paleodemography and its limitations, followed by the paleodemographic data, including the age and sex composition of the New York African Burial Ground sample, mortality patterns of subadults and adults, life expectancy, and sex ratios. The second section summarizes the historical demographic data within a historical context. This includes population size, age and sex composition, sex ratio, and mortality trends identified in living people for the colonial period. The third presents comparative population parameter assessments from the African Diaspora and colonial New York.

The sum of demographic research on the New York African Burial Ground consists of data on migration, fertility, mortality, and population structure. Demographic profiles can reasonably document the movements of Africans into and out of colonial New York City; the proportions of men, women, and children of different ages who made up the African community; their frequency of death and life expectancy at different ages; and changes in population size and composition. Therefore, these population profiles provide

a means of determining who constituted the African community during the historical development of the city. Changes in population profiles reflect changes in the social, economic, political, and environmental conditions that shaped the colonial African experience in New York.

Taking into consideration that investigating the African presence in the archaeological and historical record is a "search for the invisible people" (Rankin-Hill 1997), the quantity and quality of data available for this study were sufficient for an accurate reconstruction of the larger living African community of colonial New York City, including those persons interred in the African Burial Ground. For the colonial period, there are two main data sources: historical archival/documentary evidence and paleodemographic evidence.

Census data and other historical documentation are available for colonial New Yorkers, primarily Euroamericans and, to some extent, Africans. These data are useful for understanding migration, fertility, and population structure, although there are also significant limitations with these sources. These limitations include: a lack of detail in the available historical and archival documents; changing categories between censuses and other sources (e.g., the age when a child becomes an adult); and undercounts of Africans due to smuggling and underreporting cargo and property subject to tariffs and taxation. For example, in the Spanish slave trade, "Piezas de India" (Curtin 1969) were recorded as cargo; this could refer to 1 or 100 enslaved Africans. The available census data are less useful for assessing mortality than is the paleodemographic accounting of the dead themselves. The strengths of each data source can compensate for the weaknesses in the other. The synthesis of skeletal and historical/ archival sources provides a window into life and death in the colonial city. Furthermore, the comparison of historical/archival and paleodemographic analyses provides a means of exploring critical questions and complex biocultural interactions.

An extensive discussion of documentary evidence for New York's demography is provided in Volume 3 of this series, *Historical Perspectives of the African Burial Ground: New York Blacks and the Diaspora.* However, some of the key data from the historical work will be integrated throughout the demographic discussions and in skeletal biological chapters. Some answers are already possible from the available, integrated data. In other cases, questions have been directed to the historians' work for possible resolution.

Paleodemography

Paleodemography is the study of archaeological populations based on skeletally determined age and sex. Paleodemographic analyses provide a means for assessing mortality but are less effective with some other demographic variables. For example, estimates of and discussions concerning fertility cannot generally rely on skeletal remains; factors such as high levels of forced and/or voluntary migration and trading of enslaved African people would only further complicate assessment.

In the 30 years since Angel's (1969) article, "The Bases of Paleodemography," there have been several phases of intense criticism, followed by discourse and proposed solutions to the intrinsic problems of paleodemographic studies. In the 1970s, the major focus was on the uses—and problems of using—life tables with skeletal populations (e.g., Buikstra 1976; Moore et al. 1975).

In the 1980s, there were two major critiques of paleodemography, the most significant by Bocquet-Appel and Masset (1982), who stated that paleodemographic techniques were so flawed that the field should be abandoned, and they heralded their "farewell" to its "death." Their criticisms were based on two major points. They maintained that (1) the age structures of skeletal samples reflect only the age structures of reference populations by which skeletal aging criteria have been established, and (2) age estimates of adults lack sufficient accuracy to allow for demographic analysis. Age estimates, then, are seen as mere 'random fluctuations and errors of method' by these authors. This launched extensive debates into the early 1990s by numerous authors, for example, Van Gerven and Armelagos (1983), Buikstra and Konigsberg (1985), and Greene et al. (1986), who dispelled the idea that age assessment was so flawed it rendered paleodemography as a dead area of research.

The second major critique in the 1980s by Sattenspiel and Harpending (1983) and Johansson and Horowitz (1986) brought to the forefront the concept that the fundamental assumption of nonzero population growth of life tables and other demographic models and analyses could actually distort age at death distributions so that they reflect fertility more than mortality (Milner et al. 2000).

In the early 1990s, Wood et al. (1992) documented three critical problems in paleodemography using archaeological data sets and models to establish their argument. These three problems are: demographic nonstationary populations (populations are not stable, or stationary, as previous models assumed); selective mortality (only those that succumb at any given age are represented in a skeletal population); and hidden heterogeneity in risks (the unknown mix of individuals with mixed susceptibilities makes aggregate data almost impossible to interpret).

These changes and developments lead us to a variety of possible solutions, questions, and modeling to explore in paleodemographic studies, according to Wood et al. (1992). Others have begun to explore, both methodologically and theoretically, the direction of paleodemographic research in the future (e.g., McCaa 2002; Saunders and Hoppa 1993b). Notwithstanding the limitations of paleodemographic assessments, cautious and substantive inferences from the population structure of the dead to that of the living can be developed.

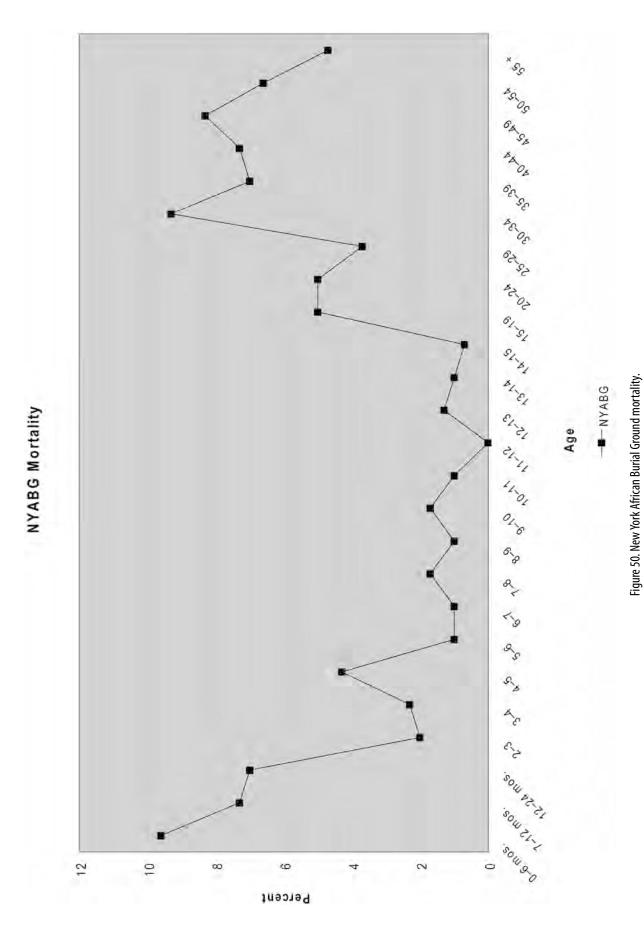
New York African Burial Ground Skeletal Sample

The New York African Burial Ground sample consisted of 419 recovered burials of which 301 were available for demographic study based on preservation (see Appendix C). Determinations of age and sex were based on multiple methods of aging and sexing for adults and aging methods for subadults, as discussed in Chapter 4. Therefore, paleodemographic assessments are based on these 301 individuals. The adult skeletal remains available for study totaled 171 individuals for whom age and sex could be determined, including 102 males and 69 females. In addition, there were 130 ageable subadult skeletons. Therefore, subadults were 43.2 percent of the total sample and adults were 56.8 percent (see Chapter 4 for detailed discussion of aging).

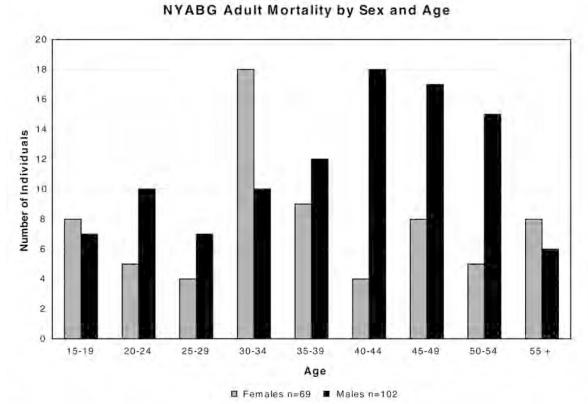
Mortality

New York African Burial Ground overall mortality, based on the total demographic skeletal sample (n = 301), was elevated in the first 2 years of life. This was followed by a decreased mortality until late adolescence/early adulthood (with a slight increase at age 4–5 that may or may not be relevant), and then mortality remained elevated throughout adulthood. Mortality was highest for infants 0–6 months (9.6 per-

cent), adults in the 30–34 age group (9 percent), and 45–49-year-olds (8.3 percent) (Figure 50).


Adult Mortality

Adult mortality was highest in the fourth and fifth decades of life when 28.1 percent of adults died in each decade. Female mortality (37.6 percent) was highest in the 30–39 age group, close to double the rate of males (21.6 percent). Male mortality was highest (34.3 percent) in the fifth decade (40–49); female mortality was lower almost by half (18.8 percent). Thus, a differential mortality trend by sex can be observed with approximately two-thirds of the females (62 percent) dying by the end of the fourth decade, compared to 45 percent of the males. Notably, many young adults, aged 15–19, were present in the burial ground.


In general, females entering their reproductive years have higher biological risks than males under non-stressful socioeconomic and environmental circumstances. In the New York African Burial Ground. both groups have similar and high rates. In general, demographers consider the ages 12-35 a "trauma bump" in mortality, especially for males both in historical and contemporary populations (Bogue 1969). Therefore, the apparent death rates for 15–19 and 20–24-year-old males may be a typical phenomenon, with other factors—such as interpersonal violence, accidents, and high-risk behaviors—contributing to young male adult mortality. Yet, these data indicate that females were under stress during a period of their lives when they should have been reproducing, not dying (Figure 51 and Table 15). Several explanations can be proposed here: (1) similar mortality rates for young men and women may result from their having been a greater proportion of the captives imported to New York, which were therefore represented in the skeletal sample in greater numbers; (2) these young adults may have represented newly arrived captives who were unsuccessful in adapting to a new environment and the lifestyle of enslavement; (3) there may be possible bias in the skeletal sample; (4) enslaved Africans entered into young adulthood biologically compromised and were at greater risk of susceptibility; or (5) an interaction of all the above factors.

Subadult Mortality

Subadult mortality is an important factor in overall population stability and viability that eventually affects natural population growth. If, indeed, as Sat-

THE NEW YORK AFRICAN BURIAL GROUND

Figure 51. New York African Burial Ground mortality by sex and age.

Table 15. New York African Burial Ground Adult Mortality

		Male			Female			Adults		
Age Group	Number	Percent Male	Percent Total Population	Number	Percent Female	Percent Total Population	Number	Percent Adult	Percent Total Population	
15–19	7	6.9	2.3	8	11.6	2.7	15	8.8	5.0	
20–24	10	9.8	3.3	5	7.2	1.7	15	8.8	5.0	
25–29	7	6.9	2.3	4	5.8	1.3	11	6.4	3.7	
30–34	10	9.8	3.3	17	24.6	5.6	27	15.8	9.0	
35–39	12	11.8	4.0	9	13.0	3.1	21	12.3	7.0	
40–44	18	17.6	6.0	5	7.2	1.7	23	13.5	7.4	
45–49	17	16.7	5.6	8	11.6	2.7	25	14.6	8.3	
50–54	15	14.7	5.0	5	7.2	1.7	20	11.6	6.6	
55+	6	5.9	2.0	8	11.6	2.7	14	8.2	4.7	
Total	102	100.0	33.9	69	100.0	22.9	171	100.0	56.7	

Table 16. New York African Burial Ground Subadult Mortality

Age Category	Number	Percent of Subadults	Percent of Total
0–6 months	29	22.31	9.6
7–12 months	22	16.92	7.3
12–24 months	21	16.10	7.0
2–3	6	4.60	2.0
3–4	7	5.30	2.3
4–5	13	10.00	4.3
5–6	3	2.30	1.0
6–7	3	2.30	1.0
7–8	5	3.80	1.7
8–9	3	2.30	1.0
9–10	5	3.80	1.7
10–11	4	3.10	1.3
11–12	0	0.00	0.0
12–13	4	3.10	1.3
13–14	3	2.30	1.0
14–15	2	1.50	0.7
Total	130	100.00	43.2

Note: Age category is in years unless otherwise noted.

tenspiel and Harpending (1983) have argued, subadult skeletal remains actually represent subadult birthrates rather than deaths, then birthrates can be inferred as being high; yet overall African population growth in New York City was low and gradual. The majority of subadult deaths (39.2 percent) occurred during the first year of life, followed by another 16.1 percent in the second year. Therefore, 55.3 percent of all the subadults died by age 2. A sharp decline between ages 2 and 4, with a doubling at age 4–5, is followed by a radically decreased mortality until adulthood (Table 16).

Historical Demography of Africans in Early New York

It has been estimated that at a minimum, 6,800 Africans were imported into New York colony between 1700 and 1774, with approximately 2,800 coming directly from Africa and 4,000 from the Caribbean and

Southern colonies. Perhaps one-fifth to one-quarter of them remained within the city of New York (Lydon 1978:382–383, 388). Many lived there for the rest of their lives, had children, and were eventually buried in the African Burial Ground. Some gained legal freedom, gradually building a free African population (which nevertheless had to fight to attain basic civil liberties), but most died enslaved.

The county of New York did not maintain official death records prior to the early nineteenth century. The quantitative data available, therefore, are from church records and are for the European rather than the African community; only nine deaths of Africans appear among the thousands recorded in the surviving colonial New York church records. Most of these available church records provide limited information. Age at death is given by only a few denominations and for limited time periods. For example, the Dutch Reformed Church only provided categories (male, female, child, and infant), thus rendering the records unquantifiable. Overall demographic research on the

Year Black White **Percent White Total Percent Black** 1698 4,937 700 14.2 4,237 85.8 1703^a 799 4,391 18.2 3,592 81.8 1712 975 5,861 16.6 4,886 83.7 1723 7.248 1.362 18.8 5,886 81.2 1731 8,622 1,577 7,045 81.7 18.3 1737 10,664 1,719 8,945 83.9 16.1 1746 11,717 2,444 20.9 9.273 79.1 1749 13,294 2,368 10,926 82.2 17.8 1756 13,046 2.278 17.5 10,768 82.5 1771 21,863 3,137 14.3 18,726 85.7 1786 23,614 2,107 8.9 21,507 91.1 3.092^{b} 1790 9.9 31,225 28,133 90.1 5.867^c 1800 57,663 10.2 51,796 89.8

Table 17. Population of New York County, 1698–1800

Note: From Foote (1991:78) and White (1991:26), except 1703. Both Foote and White have corrected the raw figures. See also Kruger (1985:131), though there are some discrepancies in the percentages for 1786, 1790, and 1800.

Middle Atlantic colonies is severely limited and does not provide a broad basis for comparative studies.

New York County's population grew steadily between 1698 and 1800, actually increasing almost twelvefold. The African population only grew eightfold during the same period. The proportion of Africans in New York fluctuated throughout the period, actually declining between 1786 and 1800. The Euroamerican population remained fairly constant (around 80–85 percent of the total population) until 1786 when it increased to 91.1 percent (Table 17 as revised by Medford).

Age and Sex Structure

The proportion of men to women (sex ratio) is utilized for assessing a population's "stability." Relatively equal numbers between the sexes within each age group often suggest that the population has been in place long enough to affect the equilibrium produced through natural fertility. An equal sex ratio (presented as 100 on a scale in which lower numbers represent an underrepresentation of males) also indicates a favorable availability of marital partners for the establishment of families. There are no standards for "normal" or "abnormal" sex ratios per se; it is the relationship of sex ratios with birthrates and death rates that are significant to population growth and age-sex structure. For example, a sex ratio of 110 would indicate that there is a preponderance of males; a sex ratio of 89 would indicate a shortage of males in the population. Of course, the sex ratio in the reproductive age group would have the greater short-term impact on overall population growth. In many enslaved sugar, coffee, and/or tobacco plantations of the Caribbean, despite the lower sex ratios (more females), the combination of birth, death rates, and health care quality led to declining enslaved populations (e.g., Higman 1991; Fraginals 1977).

Historically, the earliest phases of voluntary migration often produce sex ratios far in excess of 100 because of the initial large migration of men prior to the migration of women. Recent immigrants also tend to have fewer children, and the elders tend not to migrate. Essentially, the majority of first-wave inmigrants tend to come from the most economically productive age groups.

⁸ From census of households in New York City (see below). These figures differ from those given in the 1703 census of the colony of New York, which listed only 630 blacks.

Includes 1,036 free and 2,056 enslaved blacks.

[©] Includes 3,333 free and 2,534 enslaved blacks.

These populations tend to grow rapidly as time goes on and women arrive in large numbers and children proliferate, especially in agrarian communities. A population's growth and fertility are more dependent upon the number of reproductive females than on the number of reproductive males. When considering enslaved populations in many cases, these historical and contemporary identified trends occur in the early phases of capture and trade; as trade in human cargo escalates, the needs of the prevailing political economy shapes the age-sex composition and sex ratio of the enslaved population. Several of the same population trends associated with voluntary migration are also observed in the New York African population, despite the fact that involuntary migration of enslavement was based on a selective process external to the captive men, women, and children. In 1626, the Dutch Colony of New Netherlands initially imported 11 men, followed by the first 3 enslaved African women in 1628 (McManus 1966). This selection process of captors focused on able-bodied, economically productive males and, eventually, females and excluded those segments of low labor value—namely, the very young, the old, and the infirm. This phenomenon also had an impact on African demographic patterns by establishing a pattern of underpopulation and underdevelopment of the African continent.

Eighteenth-century censuses identified by project historians provide a data source for New York inhabitants, including Africans. As in all historical documents, the potential for inaccuracy is recognized, understanding that undercounts of both enslaved Africans and Euroamericans is probable. The selective nature of the slave trade is further substantiated in the New York eighteenth-century censuses, in which the proportional rates of African adults relative to children (excluding 1731 and 1737 when adults were defined by 10 years of age and older) were highest (Table 18). New York's African adult population was fairly consistent around 60–65 percent; in 1746, it decreased to 53 percent followed by a return to the earlier higher rates.

Sex Ratio

Throughout the eighteenth century, based on historical documents and contemporary literature (Kruger 1985), sex ratios tended to indicate an excess of females or numbers equivalent to males (Table 19). A substantially greater number of males were reported only for 1746 (126.7 percent) and 1737 (110.7 percent). The proportion of males (but not their absolute num-

bers) decreased most markedly following periods of political upheaval in the Americas (see Table 19) (see Chapter 13 for further discussion). Low sex ratios have been observed as an urban phenomenon during enslavement and antebellum periods in several states and the Caribbean. For example, Higman (1984, 1991) observed low sex ratios in blacks in West Indian towns, and Morgan (1984) observed a preponderance of women in many years in Charleston, South Carolina. Because females were of great value as domestics within towns and cities, women were actively sought by slaveholders and by early urbanites in non-slaveholding states. Domestic work was not an easier work regime; domestics were engaged in strenuous physical labor, as evidenced by skeletal biological and paleodemographic assessments of the First African Baptist Church cemetery, a nineteenthcentury urban 'free people of colour' (Rankin-Hill 1997).

Comparisons with the New York Colonial European Community

Historical records provide few contemporary comparative populations, European or African, for the eighteenth century. The best potential source for mortality data was the Trinity Church and burial ground records. Trinity Church, an Anglican Church near the African Burial Ground site, is one of the oldest churches in New York City. Many of those buried in the cemetery were most probably the slaveholders of those interred in the African Burial Ground. The project's Office of Public Education and Information compiled the data set from a publication of existing church records that cover the period from 1700 to 1777 (Corporation of Trinity Church 1969). Although records and epitaphs were available for a greater length of time, these were excluded because of the turmoil and subsequent evacuation of New York City during the Revolutionary War. These church records, as any historical document, can have intrinsic flaws and/or biases; these can include non-recordation, interment elsewhere, or religious, social, and/or political exclusion from the cemetery, among other reasons. The Trinity Church burial population consisted of 327 interments, 187 adults and 140 children; of the adults, there were 100 male and 87 female adults.

Adult mortality patterns between the two populations differ somewhat dramatically; to some extent, they are inverse images of each other (Figure 52). In comparing adults by age and sex and subadults, a

Table 18. African Population by Age and Sex, Eighteenth-Century Censuses

Year	Male Adults	Female Adults	Male Children	Female Children	Age Cutoff	Label in Census	Notes
1703	298	276	124	101	≤16	negroes	
1712	321	320	155	179	≤16	slaves	
1723	408	476	220	258	not given	negroes and other slaves	presumed 16
1731	599	607	186	185	≤10	blacks	
1737	674	609	229	207	≤10	black	
1746	721	569	419	735	≤16	black	black adult males includes 76 males over 60
1749	651	701	460	556	≤16	black	black adult males includes 41 males over 60
1756	672	695	468	443	≤16	black	black adult males includes 68 males over 60
1771	932	1,085	568	552	≤16	black	black adult males includes 42 males over 60
1786	896	1,207	_	_	_	slaves, negroes	

Note: From United States Bureau of the Census (1909), checked against Brodhead (1856–1887). Some discrepancies in the numbers appearing in Kruger (1985) and Foote (1991) have been corrected.

differential pattern between European and African New Yorkers can be observed. The Trinity Church males had moderate death rates during middle age (30–49) and primarily died in later life (with great longevity into the 80s and 90s). The only age group where Trinity mortality exceeded the New York African Burial Ground males was in the 25–29 and 55-andolder age groups (Figure 53). This higher rate of death in the mid 20s may be explained by the in-migration of young men, who would have constituted a larger segment of the population, would have been subjected more frequently to interpersonal violence, and proportionally would have died in greater numbers. Other reasons for the early mortality of English men are still under investigation by historians. African male mortality was the highest at 40–49 followed by 50-54. Therefore, New York African Burial Ground males were experiencing significantly higher mortality rates in early adulthood.

Female mortality for Trinity Church peaked at ages 55 and older and 25–29; the longevity of Eng-

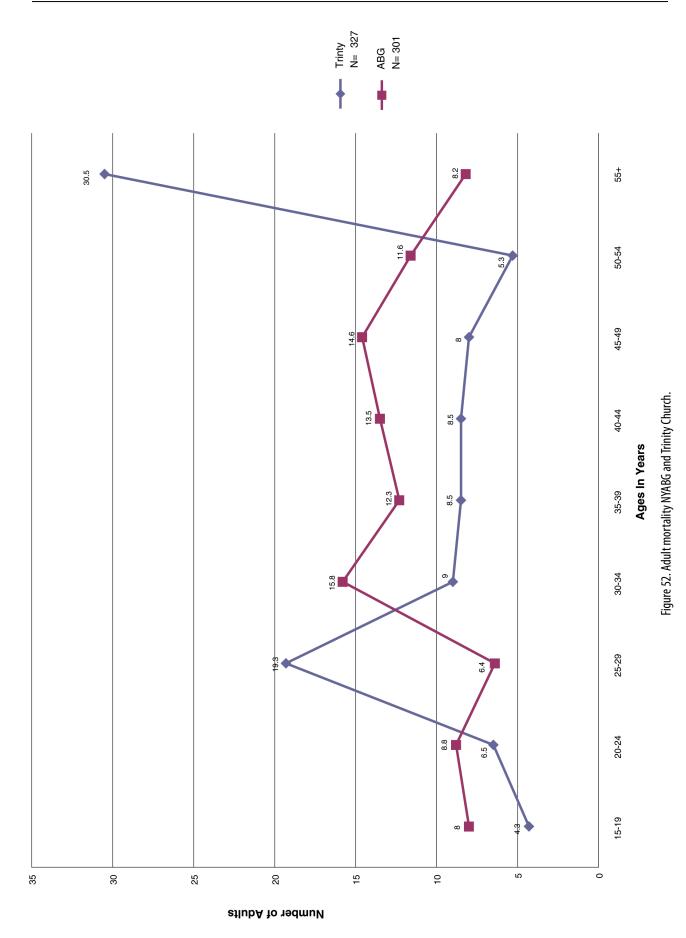
lish women was only slightly less than that of males and, of course, much higher than the New York African Burial Ground women. High mortality in the 25–29 age group was a repeated pattern throughout the eighteenth and nineteenth centuries in America, primarily based on the stresses of reproduction; this pattern did not decline until the early twentieth century. The New York African Burial Ground women died at proportionately higher numbers throughout early adulthood; by age 40, 62 percent of New York African Burial Ground women and 54 percent of their European counterparts had died. Yet the women of Trinity Church had a reduced mortality regime after the 25–29 peak and went on to live to older ages; very few African women made it to old age (see Figure 53).

Subadult mortality for Trinity Church exceeded the New York African Burial Ground in the 0–5 years of life, whereas the New York African Burial Ground was slightly higher in the 5–9 age group and exceeded Trinity Church subadult mortality in ages 10–14,

Table 19. Sex Ratio New York City County 1703–1819

Year	Sex Ratio	Notes
1703	107.9	
1712	100.3	
1723	85.7	
1731	98.7	This year's census counted persons over or under 10 years of age; thus "adults" were not all of childbearing years. Overall sex ratio was 99.1.
1737	110.7	This year's census counted persons over or under 10 years of age; thus "adults" were not all of childbearing years. Overall sex ratio was 110.6.
1746	126.7	
1749	92.9	
1756	96.7	
1771	85.9	
1786	74.2	
1790 1800 1810		Federal censuses did not count blacks by sex.
1805	72.3	Local censuses for the early nineteenth century (Kruger 1985:370).
1819	65.8	

Note: From United States Bureau of the Census (1909). Discrepancies were found in Foote's (1991) and Kruger's (1985) numbers and have been corrected. The numbers in United States Bureau of the Census (1909) were checked in Brodhead (1856–1887).


10 percent and 4 percent respectively (Table 20). The overall mortality regime for the New York African Burial Ground and Trinity Church were almost identical in pattern with high early-childhood mortality and a dramatic decline for ages 5–9 and 10–14 (Figure 54).

Young children and infants are always underrepresented in historical cemetery populations but the underrepresentation in archaeological cemeteries with varied preservation conditions, such as the New York African Burial Ground, tend to be dramatically higher. Most of the Trinity Church mortality data used here derive from archival records, and Corruccini et al. (1982) clearly showed that such records of infant mortality in contemporary (eighteenth-century) Barbados were several times greater than the numbers of infant skeletons they observed; the numbers of better-preserved adults skeletons were comparable to archival figures. Hence, the pattern of mortality fits what is known about the colonial period, characterized by epidemics and unhealthy sanitary conditions that affected the morbidity and mortality of all colonial Americans. The overall impact on this enslaved population was more dramatic.

It is very clear from these data that the factors affecting age at death were very different among enslaved Africans and the prominent English parishioners of Trinity Church who held them in bondage. Both English men and women lived to old age up to 10 times more often than did Africans.

Comparative Skeletal Biological Studies of the African Diaspora

The limited skeletal series of Africans in the Diaspora that have been studied represent a broad spectrum of lifestyles and biohistory throughout the eighteenth, nineteenth, and early twentieth centuries (Table 21). These skeletal biological series include: South Carolinian plantation enslaved (Rathbun 1987); Maryland industrial enslaved (Kelley and Angel 1983); ex-slaves and their descendants from rural Arkansas

Volume 1, Part 1. The Skeletal Biology of the New York African Burial Ground

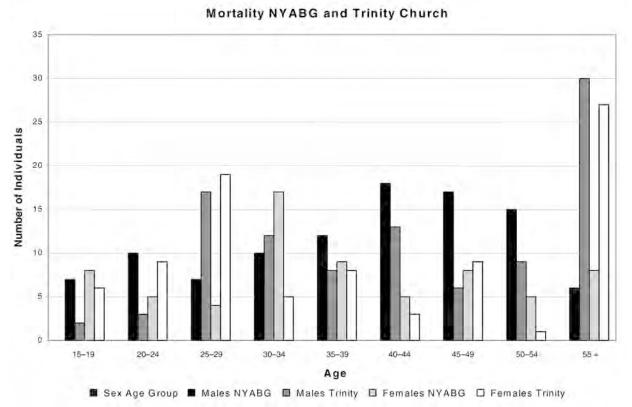


Figure 53. Mortality NYABG and Trinity Church by sex and age.

Age	NYABG	Percent Subadults	Trinity	Percent Subadults
0–5	98	75.4	119	85.0
5–9	19	14.6	15	10.7
10–14	13	10.0	6	4.3
Total	130	100.0	140	100.0

(Rose 1985); urban slaves from New Orleans (Owsley et al. 1987); poor and destitute urban dwellers from Reconstruction-period Atlanta (Blakely and Beck 1982); slaves from several small (containing from one to nine burials) southern Colonial farms or plantations (Angel et al. 1987); Philadelphia urban "free people of colour" (Angel et al. 1987; Crist et al. 1999); Rankin-Hill 1997); and the only Caribbean series, the enslaved at a Barbadian sugar plantation (Handler and Corruccini 1986). Availability of the majority of these African American skeletal populations for

analysis has been limited (2 weeks to several years) because of their historical status and/or exhumation conditions. Only one skeletal series has been curated, that of Catoctin Furnace (Kelley and Angel 1983); the remainder have been reburied or are scheduled for reinterment.

There are three general trends observed in all African Diaspora skeletal series, which concur with biohistorical lifestyle and health analyses (e.g., see Kiple and Kiple 1980; Rankin-Hill 1997): (1) high infant and child mortality, (2) periods of malnutrition and disease

100 80 60 40 20 0-5 5-9 10-14

Subadult Mortality NYABG and Trinity

Figure 54. Subadult mortality NYABG and Trinity Church.

Age

indicated by linear enamel hypoplasias and nonspecific infectious lesions, and (3) high incidences of degenerative joint diseases and muscle-attachment-area hypertrophy, evidencing the physically strenuous lives of Africans in the New World. Differential patterns are observed among and between these African Diaspora skeletal series in longevity (by sex), general health status, type, and incidence of trauma. These studies demonstrate the need for regionally, temporally, historically, and culturally focused studies of Africans in the New World. Comparisons and conclusions regarding African Diaspora skeletal biological studies have varied based on several factors: the preservation of the skeletal remains, which affects the types of analyses possible; the methodologies undertaken by different investigators; and the presentation of data. The following section encapsulates provenience and demography of the major African Diaspora skeletal series. These skeletal series provide comparisons for the New York African Burial Ground where data were available and appropriate.

Newton Plantation, Barbados, West Indies

Corruccini and coworkers (1982) undertook the only large study of an African American enslaved population from the Caribbean. This series represents a

population involved in an intensive sugar-plantation economy. This slave cemetery, associated with the Newton plantation in Barbados, consisted of 104 individuals interred between 1660 and 1820. The analyses indicated a mean age at death of 29.3 years; owing to poor preservation, the sample was not differentiated by sex. Historical data available on the Newton plantation's captives aided the evaluation of the demographic patterns determined from the scarce skeletal remains. These data "show vastly greater infant and child mortality, stability with relatively low mortality ages 10–35, then consistently greater mortality by age 40 than is indicated by skeletal aging" (Handler and Lange 1978:286).

St. Peter Street Cemetery, New Orleans, Louisiana

The St. Peter Street Cemetery in New Orleans, Louisiana, dating ca. 1720–1810, was studied by Owsley et al. (1987). St. Peter served as New Orleans's principal cemetery during the city's first 70 years under both Spanish and French rule. Until the discovery of the New York African Burial Ground, this cemetery represented the earliest urban African American skeletal population that had become available for study.

The sample consisted of 29 individuals, 23 adults aged 20 and over, and 6 subadults (1 infant, 2 aged

Table 21. Skeletal Series of the African Diaspora

Site and/or Location	Time Periods	Total Number of Burials	Lifestyle	Preservation	Analysis	Status
Newton, Barbados	1660–1820	104	plantation slaves	fragmentary	months	reinterred
New York African Burial Ground	1694–1794	419	urban slaves	fragments; excellent	7 years	reinterred 2003
Colonial sites	1690–1820	29	plantation slaves	poor to good	indefinite	available®
St. Peter Street Cemetery, New Orleans ^b	1720–1810	13	urban slaves	poor	3 years	reinterred
Catoctin Furnace, Maryland	1790–1820	31	industrial slaves	fragments; poor	indefinite	available®
FABC 8th Street, Philadelphia	1821–1843	144	ex-slaves and freeborn	poor to good	3 years	reinterred
FABC 11th Street, Philadelphia	1810–1822	89	ex-slaves and freeborn	poor to good	5 years	reinterred
38CH778, South Carolina	1840–1870	36	plantation slaves	poor to good	1 year	reinterred
Oakland Cemetery, Atlanta, Georgia	1866–1884	17	poor and indigent	fragments; excellent	?	reinterred
Cedar Grove Cemetery, Arkansas	1890–1927	79	rural farmers	poor to excellent	2 weeks	reinterred

Note: From Rankin-Hill 1997.

5–9, and 3 aged 15–19); of these, 13 (45 percent) were identified as African Americans and were most probably enslaved people. Females appear to have had a shorter life span than males, with peak mortality at 20–24 years of age and slightly higher rates of death; male mortality peaked at 40-49 years. But Owsley et al. (1987:10) cautioned that an "inherent sample bias may misrepresent the actual mortality curve of the colonial population" due to small sample size and the underrepresentation of infants and children.

Catoctin Furnace, Maryland

The Catoctin Furnace Cemetery in Frederick County, Maryland, dates from the late 1790s to 1820. The skeletal population studied represented only one-third of the cemetery population because the rest of the cemetery had been covered by a state highway. This

skeletal material was recovered during the widening of the highway and constituted a small sample of 31 individuals (15 adults, 14 children under the age of 12, and 2 teenagers). These individuals were members of an enslaved ironworking community, and primarily represented kin (Kelley and Angel 1983). Females were at greater risk of early death in this industrial slave community, as indicated by a mean age at death of 35.2 years for females and 41.7 for males, a pattern of earlier female mortality comparable to post-Reconstruction Cedar Grove.

38CH778, South Carolina

Inadvertently discovered during construction-related ground leveling, Site 38CH778 was the slave cemetery associated with a plantation outside of Charleston, South Carolina (Rathbun 1987). Thirty-six individuals,

Key: FABC = First African Baptist Church.

^a Remains available at the Smithsonian Institution, Museum of Natural History.

^b n = 29; 13 African Americans.

interred between 1840 and 1870, were recovered and subsequently reinterred. Skeletal remains consisted of 28 adults (13 male, 15 female) and 8 subadults. Males appear to have been at greater risk of earlier mortality, with a mean age at death of 35 years, versus 40 years for females.

First African Baptist Church (1821–1843) 8th and Vine Streets, Philadelphia, Pennsylvania

The First African Baptist Church (FABC) Cemetery, located in what is today known as Center City, Philadelphia, was discovered in November 1980 during the excavation of the Philadelphia Commuter Rail tunnel. The cemetery was in use ca. 1822–1843 until the Board of Health closed it down. The members of the FABC congregation buried in the cemetery represent a community of ex-enslaved and freeborn African Americans. The FABC cemetery consisted of 144 burials; of these, 135 skeletons were recovered. There were 75 adult and 60 subadult skeletons. The adults consisted of 36 males and 39 females. The majority of subadults (55 percent) were infants (0–6 months). Females, in general, died earlier than males. The mean age at death for FABC females was 38.9 years and 44.8 years for males (Kelley and Angel 1987; Rankin-Hill 1997).

Cedar Grove, Arkansas

The Cedar Grove Baptist Church Cemetery (Rose 1985) was the burial site of a post-Reconstruction (1890–1927) rural African American population that consisted of descendants of the local plantation freedmen. The revetment of the Red River by the U.S. Army Corps of Engineers led to the salvage excavation of burials scheduled for destruction. The 79 burials were excavated from the section that was in jeopardy of eroding out and targeted for salvage removal. These burials comprised 73.6 percent of the total cemetery population and represented 40 percent of the time the cemetery had been in use since its founding in 1834 by enslaved people (prior to the establishment of the Baptist Church and cemetery).

Demographic patterns suggested that the Cedar Grove sample represented a highly stressed population. Females and infants constituted a high percentage of the cemetery population, an indication of high infant mortality (27.5 percent) and of a life expectancy

of 14 years at birth. Adult (above age 20) mean age at death was 41.2 years for males and 37.7 years for females. Thus, females had an earlier and higher mortality rate than males, a pattern opposite to that of the enslaved at 38CH778, South Carolina, but similar to that of other African Diaspora skeletal series (e.g., Catoctin Furnace).

Mean Age at Death

The mean age at death for the New York African Burial Ground sample was 22.3. The low mean age at death reflects the high childhood mortality in the New York population. The New York African Burial Ground mean age at death by sex was 38.0 for males and 35.9 for females. The slight advantage of males is common in many African Diaspora skeletal populations (Table 22), with the exception of enslaved plantation South Carolinians and the New Orleans urban enslaved; however, in these cases, the results may be artifacts of small skeletal samples and preservation status. An independent-samples *t*-test was run in SPSS using the composite ages for adult New York African Burial Ground males and females to test for difference in the mean age at death; no significant difference was found, t = 1.190; p > .05 (p = 2.36).

New York African Burial Ground women have a lower mean age at death than the women from the ironworking Catoctin Furnace, Maryland, site where women were devalued as workers because they only contributed domestic chores. In each of the comparisons, the maximum age of 55 and older was used, therefore making the comparisons possible and avoiding one of the potential biases of this calculation. All of the skeletal series with the exception of the Newton plantation had a range of preservation status that allowed for multiple methods of aging and sexing (in order to increase accuracy and reliability), as did the New York African Burial Ground sample. In attempting to test whether there was a statistically significant difference among sample mean ages at death considering the difference in sample size, a one-way ANOVA was undertaken in SPSS for New York African Burial Ground, FABC, and Catoctin Furnace. The analysis was limited to these three samples because composite ages were not available for the others and mean ages were based on published data. The ANOVA yielded no significant differences in mean ages of death among the three populations, F = 0.791; df = 2,260; p > .05 (p = 0.454). In addition, population

African American Skeletal Populations	Mean Age or Age Range at Death					
African American Skeletal Populations	Males	Females	Total			
Newton Plantation, Barbados, West Indies ^a	_	_	29.3			
New York African Burial Ground	38	35.9	36.9			
St. Peter Street Cemetery, Louisiana ^b	40–49	20–24	_			
Catoctin Furnace, Maryland [©]	41.7	35.2	38.4			
First African Baptist Church Cemetery ^d	44.8	38.9	41.3			
38CH778, South Carolina [⊕]	35.0	40.0	37.5			
Cedar Grove, Arkansas ^f	41.2	37.7	39.5			

Table 22. Adult Mean Age at Death for African American Skeletal Populations

size had no significant effect on mean age of death, F = 0.791; df = 2, 260; p > .05 (p = 0.454).

In determining whether there was a statistically significant difference between male and female means at death within populations, an independent-samples t-test was run to see if there were sex differences across all samples for mean age at death. This test yielded significant sex differences in mean age at death across all samples, t = 2.964; df = 261; p < .05 (p = .003). This was followed by individual independent-samples t-tests for within-sample differences by sex for the three samples. As reported above, there was no significant difference between the sexes for the New York African Burial Ground sample; for Catoctin Furnace, there was also no significant difference in mean age of death for males and females, t = 1.285; df = 13; p > .05 (p = .221). However, for the FABC, there was a significant difference in mean age of death between the sexes, t = 3.16; df = 75; p < .05 (p = .002).

Mortality

The New York African Burial Ground infant mortality rate (under 12 months) was low at 15.2 percent of all individuals who were assigned ages or 16.9 percent of the 301 best-preserved individuals (assessed for both age and sex) compared to FABC at 25 percent. Because the New York population only represents a segment of a large cemetery population, and FABC represents the entire cemetery, the underrepresentation of infants due

to excavation selection and poor preservation associated with site conditions may partly explain the lower infant mortality. Other possibilities could include burial of infants outside of the cemetery, lower fertility, or that a greater number of infants survived and eventually died in later childhood or early adolescence.

New York African Burial Ground early-childhood mortality did not appear to have a bimodal tendency as observed in both the Cedar Grove post-Reconstruction African American population (Rose 1985) and the FABC nineteenth-century free African Americans in Philadelphia (Rankin-Hill 1997). In both of these populations, there was a high infant-mortality rate during the first 6 months followed by a decline and then an increase again during the second year, which may have been associated with a weaning period. In the New York African Burial Ground sample, however, early childhood mortality remained high throughout the first 2 years of life (Table 23).

Survivorship and Life Expectancy

Life table data, such as age-specific probability of dying and life expectancy, may be compared to other unsmoothed life table data for other regionally, temporally, or socioculturally comparable populations or to the patterns observed in model life tables. Examples of commonly used model life tables are those developed by Weiss (1973), based on both ethnological and skeletal populations, and those developed by Coale

^a From Corruccini et al. 1982

^bFrom Owsley et al. 1987

[©]From Kelley and Angel 1983

From Angel et al. 1987 and Rankin-Hill 1997

From Rathbun 1987

fFrom Rose 1985

	NY	ABG	F/	ABC	Cedar Grove		
Age [®]	Number of Deaths	Percent of Total Subadults	Number of Deaths	Percent of Total Subadults	Number of Deaths	Percent of Total Subadults	
0–6 months	29	22.3	26	43.3	17	38.6	
7–12 months	22	16.9	8	13.4	5	11.4	
Subtotal, <1	51	39.2	34	56.7	22	50.0	
<2	21	16.1	11	18.3	11	25.0	
3–5	26	20.0	4	6.7	1	2.3	
6–15	32	24.6	11	18.3	10	22.7	
Total	130	100.0	60	100.0	44	100.0	

Table 23. NYABG, FABC, and Cedar Grove Subadult Mortality by Age Group

and Demeny (1966) for isolating abnormal characteristics in mortality profiles (Moore et al. 1975). Through these demographic analyses, we can generate population parameters and examine long-term trends in adaptation, health, and disease.

As discussed earlier, life tables in particular have generated severe criticism in recent years because of the inherent problems of reduced accuracy in aging skeletons and whether the skeletal samples meet the fundamental assumptions of model life tables. These assumptions are: (1) there is a stable static population, (2) mortality is not selective, and (3) risk is constant throughout the population (Wood et al. 1992). In actuality, very few, if any, prehistoric, historicalperiod, or contemporary populations would meet these criteria. In prehistoric and historical-period skeletal populations, one or more of these criteria are either violated or are unknown to the researcher. In the New York African Burial Ground sample and most African Diaspora collections, all of the criteria are not met (whether working with historical documents or skeletal data). In recent years, sophisticated statistical modeling techniques have been undertaken in order to ameliorate problems created by failure to meet the criteria. In the case of samples that do not meet the criteria, there are also greater issues. These issues are primarily associated with their biological heterogeneity and whether they are actually a biological population simply because they had similar life experiences and ended their lives interred in the same cemetery. Further discussion will be explored in another context. Therefore, with clear knowledge of the limited "value" of life table analysis, some basic observations will be presented herein.

A life table using unsmoothed data was constructed for the New York African Burial Ground sample using an Excel database computerized-life table (Table 24). In addition, we generated life tables for FABC and Cedar Grove to use for comparisons (Rankin-Hill 1997). Survivorship was higher for the New York African Burial Ground sample compared to Cedar Grove until age 45, although paralleling FABC and Weiss's (1973) model MT30-60.0 in adulthood. The New York African Burial Ground sample had higher survivorship in early childhood than Cedar Grove, FABC, and both model tables. Nevertheless, survivorship (lx) for New York African Burial Ground, FABC, Cedar Grove (MT15.0-45.0) [The best fit model life table as reported by Rose et al. (1985)], and MT30–60.0 clearly demonstrate the impact of infant mortality on the overall pattern (Figure 55).

An independent-samples t test yielded no significant sex differences in survivorship within the New York African Burial Ground sample, t = 0.339; df = 16; p > .05 (p = .739). A one-way ANOVA was run for New York African Burial Ground, FABC, and Cedar Grove, but the analysis yielded no significant differences in survivorship among the three groups, F = 1.282; df = 3, 68; p > .05 (p = .288).

Life Expectancy

Life expectancy (E^ox) at birth for the New York African Burial Ground members was 24.2 years. By ages

^a In years unless otherwise indicated.

Age Interval [®]	No. of Deaths (Dx)	% of Deaths (dx)	Survivors Entering (lx)	Probability of Death (qx)	Total Years Lived Between X and X + 5 (Lx)	Total Years Lived After Lifetime (Tx)	Life Expectancy (e0x)		
0–5 months	29	9.63	100.00	0.0963	9.518	2420.316	24.20		
6–12 months	22	7.31	90.37	0.0809	8.671	2410.797	26.68		
1–2	21	6.98	83.06	0.0840	90.664	2402.126	28.92		
3–4	26	8.64	76.08	0.1135	358.804	2311.462	30.38		
5–9	19	6.31	67.44	0.0936	321.429	1952.658	28.95		
10–14	13	4.32	61.13	0.0707	294.850	1631.229	26.68		
15–19	15	4.98	56.81	0.0877	271.595	1336.379	23.52		
20–24	15	4.98	51.83	0.0962	246.678	1064.784	20.54		
25–29	11	3.65	46.84	0.0780	225.083	818.106	17.46		
30–34	27	8.97	43.19	0.2077	193.522	593.023	13.73		
35–39	21	6.98	34.22	0.2039	153.654	399.502	11.67		
40–44	23	7.64	27.24	0.2805	117.110	245.847	9.02		
45–49	25	8.31	19.60	0.4237	77.243	128.738	6.57		
50–54	20	6.64	11.30	0.5882	39.867	51.495	4.56		
55+	14	4.65	4.65	1.0000	11.628	11.628	2.50		
Total	301	Crude Mortality Rate: 41.32							

Table 24. New York African Burial Ground Life Table

3–4, life expectancy rose to 30.38 years, reflecting the higher incidence of death for subadults under 2 years old, therefore the impact of higher risk of dying. Two life tables for adults by sex were also generated for the New York African Burial Ground. A comparison of these tables indicates different trends based on sex. Males in the 15–19 and 20–24 age groups had life expectancies of 24.41 and 21.03, respectively. By age 25–29, male life expectancy was 18.21 (Table 25).

At ages 15–19 and 20–24, females had life expectancies of 22.21 and 19.80, respectively; by age 25–29, female life expectancy was 16.34 (Table 26).

An independent-samples t- test in SPSS indicated no statistically significant differences between the sexes in life expectancy within the New York African Burial Ground sample, t = .051; df = 16; p > .05 (p = .960).

New York African Burial Ground life expectancy at birth (24.2) was considerably higher than the 14 years reported by Rose (1985) at Cedar Grove and slightly lower than the 26.59 years reported for FABC (Rankin-Hill 1997) (Figure 56). New York African Burial

Ground life expectancy was compared to Weiss's (1973:175, 118) model life tables MT30.0-60.0 and to MT15.0-45.0, reported by Rose as the most comparable table to the Cedar Grove mortality experience. The MT15.0–45.0 table exemplifies a highly stressed subadult population, although infant mortality was actually higher. The New York African Burial Ground life expectancy curve fits closely to the FABC from ages 10–45. Subadult life expectancy clearly points to the perils of surviving early childhood in New York. The initial childhood years from birth to age 10-15 are lower than the Weiss MT30.0-60.0 and FABC, but higher than that for Cedar Grove. New York African Burial Ground and FABC are similar from age 20, declining at comparable rates. New York African Burial Ground life expectancy declines even more rapidly than for the "highly stressed" Cedar Grove group after age 45. The differences between New York African Burial Ground, Cedar Grove, and FABC life expectancy and mortality experience are significant. Clearly, post-Reconstruction Cedar Grove rural Arkansas African Americans were at highest risk

^a In years unless otherwise indicated.

Survivorship Percent Surviving Age

Figure 55. Survivorship.

Table 25. New York African Burial Ground Male Life Table

- WEISS MT30-60 ★ CEDAR GROVE MT15-40 - NYABG

Males Age Interval (In Years) (x)	No. of Deaths (Dx)	% of Deaths (dx)	Survivors Entering (lx)	Probability of Death (qx)	Total Years Lived Between X and X+5 (Lx)	Total Years Lived After Lifetime (Tx)	Life Expectancy (e0x)			
15–19	7	6.86	100.00	0.0686	482.843	2,441.176	24.41			
20–24	10	9.80	93.14	0.1053	441.176	1,958.333	21.03			
25–29	7	6.86	83.33	0.0824	399.510	1,517.157	18.21			
30–34	10	9.80	76.47	0.1282	357.843	1,117.647	14.62			
35–39	12	11.76	66.67	0.1765	303.922	759.804	11.40			
40–44	18	17.65	54.90	0.3214	230.392	455.882	8.30			
45–49	17	16.67	37.25	0.4474	144.608	225.490	6.05			
50–54	15	14.71	20.59	0.7143	66.176	80.882	3.93			
55+	6	5.88	5.88	1.0000	14.706	14.706	2.50			
Total	102		Crude Mortality Rate: 40.96							

Table 26. New York African Burial Ground Female Life Table

Females Age Interval (In Years)	No. of Deaths (Dx)	% of Deaths (dx)	Survivors Entering (lx)	Probability of Death (qx)	Total Years Lived Between X and X+5 (Lx)	Total Years Lived After Lifetime (Tx)	Life Expectancy (e0x)		
15–19	8	11.59	100.00	0.1159	471.014	2,221.014	22.21		
20–24	5	7.25	88.41	0.0820	423.913	1,750.000	19.80		
25–29	4	5.80	81.16	0.0714	391.304	1,326.087	16.34		
30–34	17	24.64	75.36	0.3269	315.217	934.783	12.40		
35–39	9	13.04	50.72	0.2571	221.014	619.565	12.21		
40–44	5	7.25	37.68	0.1923	170.290	398.551	10.58		
45–49	8	11.59	30.43	0.3810	123.188	228.261	7.50		
50–54	5	7.25	18.84	0.3846	76.087	105.072	5.58		
55+	8	11.59	11.59	1.0000	28.986	28.986	2.50		
Total	69		Crude Mortality Rate: 45.02						

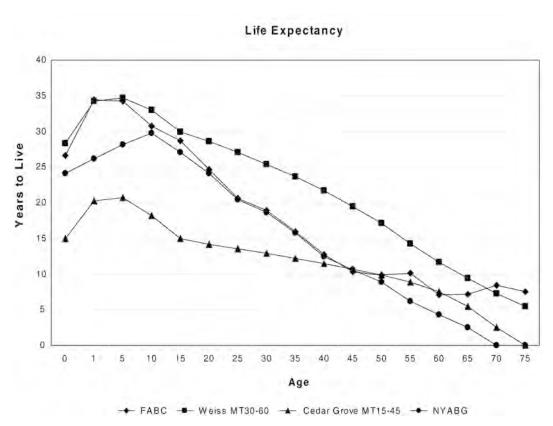


Figure 56. Life expectancy.

of dying earlier. However, at the end of the life span, life expectancy was dramatically reduced for the New York African Burial Ground sample.

Summary of Findings for the New York African Burial Ground Sample

Paleodemography

- Mortality was highest for:
 - ~ Infants 0–5 months (29 of 301, or 9.6 percent)
 - ~ Adults 30–34-year-olds (27 of 301, or 8.97 percent).
 - ~ Adults 45–49-year-olds (25 of 301, or 8.3 percent).
 - ~ Young adults aged 15–19 made up 8.8 percent of the adult sample or approximately 5 percent of the total 301 well-preserved skeletons
- A differential mortality trend by sex was observed:
 - ~ 62 percent of the females died by the end of the fourth decade.
 - ~ 45 percent of the males died by the end of the fourth decade.
 - ~ Female mortality (26 of 69, or 37.7 percent) peaked at age 30–39.
 - ~ Male mortality (35 of 102, or 34.3 percent) peaked at age 40–49.
- Subadult mortality was 43.2 percent for the New York African Burial Ground (n = 301).
 - ~ 39.2 percent of the subadult population (51 of 130) died during the first year of life.
 - ~ 16.1 percent of the subadult population (21 of 130) died in the second year.
 - ~ 55.3 percent of all the subadults (72 of 130) died by age 2.

Historical Demography

- Age-sex composition and sex ratio were shaped by the prevailing political economy.
- New York Africans had a high sex ratio and slow population growth, similar to the Caribbean plantation pattern.
- Sex ratios indicate either more females or equal numbers of males and females.

 The proportion of African males decreased markedly following periods of political upheaval in the Americas.

Colonial European Comparison

- High mortality in women 25–29, based on reproductive stress, was a ubiquitous American pattern throughout the eighteenth and nineteenth centuries that declined in the early twentieth.
- Observed is a differential pattern between European and African New Yorkers.
- Trinity Church males had moderate death rates during middle age and great longevity.
- Trinity Church male mortality exceeded New York African Burial Ground males at 25–29 and 55 and older
- Trinity female mortality peaked at 55 and older and at 25–29, with longevity slightly less than that of males and higher than that of New York African Burial Ground women.
- New York African Burial Ground women died at proportionately higher rates.
 - ~ 62 percent of New York African Burial Ground women died by age 40.
 - ~ 54 percent of European women died by age 40.
- Trinity Church women had a reduced mortality regime after the 25–29 age peak until age 55 and older.

Skeletal Biological Comparisons

- Mean age at death for the New York African Burial Ground cemetery sample was 22.3, including all ageable adults and subadults (n =301).
- Low mean age at death reflects high childhood mortality.
- New York African Burial Ground mean age at death was 38.0 for males and 35.9 for females.
- The bimodal tendency of childhood mortality observed in Cedar Grove and FABC was not present at the New York African Burial Ground. Both had high infant mortality rates during the first 6 months, followed by a decline, then followed by an increase again during the second year. The New York African Burial Ground early-childhood mortality remained high throughout the first 2 years of life.

- New York African Burial Ground women had a comparable mean age at death to the women from the ironworking Maryland Catoctin Furnace, who were devalued as workers.
- Life expectancy (E⁸x) at birth for the New York African Burial Ground sample was 24.2 years, and by ages 3–4, life expectancy rose to 30.38 years.
- New York African Burial Ground life expectancy (24.2) was considerably higher than the 14 years reported for Cedar Grove, and slightly lower than 26.59 for FABC.
- The differences between New York African Burial Ground, Cedar Grove, and FABC life expectancy and mortality experiences are significant:
 - Cedar Grove post-Reconstruction rural Arkansas African Americans were at highest risk of dying earlier.
 - At the end of the life span, life expectancy was significantly reduced for the New York African Burial Ground sample.

Section III: **Life and Death in Colonial New York**

CHAPTER 8

Childhood Health and Dental Development

M. L. Blakey, M. E. Mack, A. R. Barrett, S. S. Mahoney, and A. H. Goodman

Dental enamel hypoplasias are defects in crown development that appear as transverse grooves or series of pits that are partially or entirely around the circumference of the tooth. Hypoplastic defects, although they manifest in the teeth, result from metabolic disturbances of malnutrition and disease elsewhere in the body. Enamel hypoplasias thus provide evidence of general stress that may have been brought about by many different kinds of stressors. Like other "general stress indicators" such as life expectancy, infant mortality, or growth-retardation rates, frequencies of hypoplastic defects can be compared among different populations as a gross index of physical well-being and the adequacy of societal resources upon which the physical quality of life may depend. Of particular value, enamel hypoplasias develop in childhood and adolescence, when both the deciduous and permanent teeth are formed.

The evidence of these early stresses remains apparent in adult skeletons in which teeth have been retained. The defects on different teeth and in different locations on teeth represent stresses at different ages during childhood and adolescent growth, similar to the analysis of tree rings for a record of droughts during the lifetime of a tree. These defects have been observed in archaeological collections and living populations representing a very broad range of human experiences, from those of early hominids to industrial nations. Included among these are a number of studies from African American and Afro-Caribbean archaeological sites (Blakey and Armelagos 1985; Blakey et al. 1994; Clarke 1982; Condon and Rose 1992; Corruccini et al. 1985; Goodman and Armelagos 1985; Goodman et al. 1984).

This chapter puts forward an analysis of hypoplasia frequencies in the New York African Burial Ground sample. Comparisons are made of enamel defect frequencies in different age groups and sex/gender groups. We also compare individuals with culturally modified teeth who were probably born in Africa and those with unmodified teeth whose origins are unknown. Finally, we compare the New York sample with skeletal collections from other diasporic archaeological sites. Questions regarding the physical quality of life in childhood are central, as is our assessment of these data for evidence of health differences or transitions among Africa, the Caribbean, and New York, which take place at different points in the life cycles of New York Africans.

Deciduous dental enamel begins to develop during the fifth month in utero, completing development by the end of the first year of postnatal life. Permanent dental enamel begins formation at birth and continues into the sixteenth year of age. General stress indicators are visible in dental enamel because of the process of enamel formation. Ameloblastic (enamel-producing) activity involves cellular production of a protein-rich matrix that mineralizes, forming the crystalline enamel of teeth. If the development of the enamel crown is interrupted by physiological insult, a transverse groove or series of pits (hypoplasia) or discolored enamel (hypocalcification) results in the "rings" of enamel being laid down at that time (Figures 57 and 58).

Hypoplasia results from differential thickness in the enamel, whereas hypocalcification occurs during interruption within the final stages of ameloblastic activity and results in discoloration of the tooth enamel (Blakey et al. 1994:372). Dental enamel is acellular and, therefore, lesions and discolorations due to physiological stress are permanent and are not obliterated through cellular renewal. In addition to general identification of stress incidence during enamel formation, the rate of enamel matrix formation provides a mechanism for estimating the developmental stage at which the growth arrest occurred (Blakey et al. 1994:372; Goodman and Armelagos 1985). Hypoplasia provides

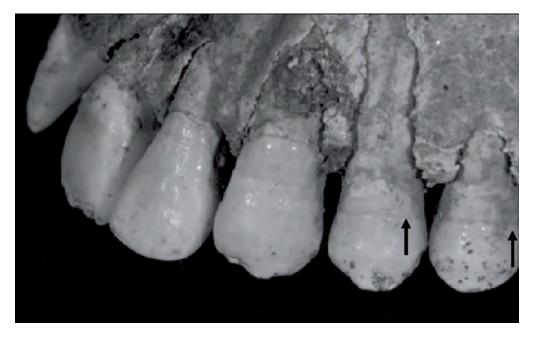


Figure 57. Linear enamel hypoplastic lesions in the anterior maxillary permanent dentition in a female aged 20–25 years (Burial 1).

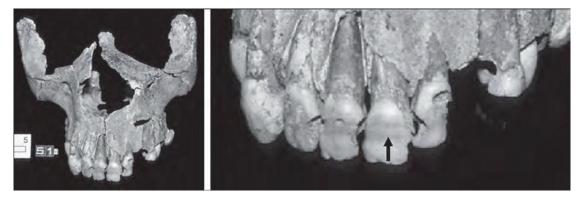


Figure 58. Bands of discoloration caused by hypocalcification in the anterior maxillary permanent dentition in a 24–32-year-old female (Burial 51) (*left*); magnification (*right*).

an estimation of stress severity and/or duration by the size of the malformation. With rare exception, dental enamel hypoplasia is a result of systemic metabolic stress associated with infectious disease, insufficient calcium, protein, or carbohydrates, and low birth weight, characterized together as "general stress" (Blakey et al. 1994; Goodman et al. 1988).

Materials and Methods

A subsample was selected from the New York African Burial Ground sample to study the occurrence and frequency of hypoplasia within adults and children (Table 27). Within this study, the presence of hypoplasia within an individual was defined by the presence of linear or nonlinear hypoplasia in one of the teeth selected for analysis. The absence of hypoplasia was defined by the absence of hypoplasia in all teeth selected for analysis. According to research conducted by Goodman and coworkers, permanent canines and incisors display 95 percent of enamel hypoplasia observed when all available dentition is represented (Goodman et al. 1980). The current study employed this "best tooth" method; we selected individuals with a permanent left or right maxillary central incisor and

Study Description	Dentition	Sample Size	
Hypoplasia and hypocalcification	canines and incisors, permanent	65	99
Hypoplasia and hypocalcification	canines and incisors, deciduous	34))
Hypoplasia controlled for attrition	canines and incisors, permanent	48	
Hypoplasia controlled for attrition	third molars	97	
Canine chronology for hypoplasia	canines, permanent	23	
Hypoplasia and hypocalcification	third molars	111	

Table 27. Summary of Study Samples

a left or right mandibular canine. The presence for permanent teeth was defined according to Codes 1, 2, and 7 within Standards (Buikstra and Ubelaker 1994) indicating that teeth are fully developed, in occlusion, and observable. A total of 65 individuals within the New York African Burial Ground were selected for analysis of permanent dentition, which represents the developmental period between birth and 6.5 years of age. A separate selection was conducted for individuals with permanent third molars, left or right, mandibular or maxillary, where presence was defined by Codes 2 and 7 within Standards (Buikstra and Ubelaker 1994: 49). One hundred and eleven individuals are included within this third-molar analysis, which represents the developmental period in life from 9 years to approximately 16 years of age.

A subsample was selected from the permanent canine and incisor study and from the third-molar study to control for age- or sex-related differences in dental attrition that might affect hypoplasia frequencies. Individuals with moderate to severe dental wear and individuals for whom dental wear could not be scored (including inability to score because of cultural modifications such as filing and pipe notches), were removed from the canine and incisor sample and from the third-molar sample. Individuals with a dental wear score of 5 or greater, according to Smith (1984), were removed from the permanent incisor and canine sample, resulting in 48 observable individuals. Individuals with a dental wear score of 7 or greater, according to Scott (1979), were removed from the third-molar sample, resulting in 97 observable individuals.

Deciduous dentition was studied by selecting individuals older than 1 year with one left or right central maxillary incisor, one left or right mandibular canine, and one second molar (Figure 59). The presence of deciduous teeth was defined by Codes 1, 2 and 7 within the *Standards* where the teeth were fully developed

and observable. Thirty-four subadults were selected to assess hypoplasia in deciduous dentition. Developmental stages spanning approximately 5 months in utero to 16 or 17 years of life are represented by the dentition selected for analysis within this study. Statistical analysis for each study employed SPSS software version 11.5.

Twenty-three individuals were assessed for the chronology of physiological stress episodes that resulted in hypoplastic lesions. Chronology was determined for defects in the left permanent mandibular canines; however, right mandibular canines were used when the left was absent or unobservable. Measurements for the beginnings and endings of hypoplastic lesions had been recorded by members of the New York African Burial Ground Project in the late 1990s (Figure 60). The distance from the dental cervix to the onset of the incisal (beginning) aspect of the lesion was recorded, followed by the measurement of the cervical (latest developing) aspect of the lesion. A midpoint for this episode was calculated, and this measurement was used in conjunction with the total crown height measurement to estimate the age at which each stress episode occurred.

Total crown height was divided by the number of years the mandibular canine develops (6 years), and this figure served as an index representing an increment of growth in 1 year. The midpoint measurement was divided by the yearly incremental growth index, which provided the number of years prior to the end of enamel development (6.5 years of age) at which the incident occurred. Next, this figure was subtracted from 6.5 to arrive at the age of occurrence for each episode. For analysis within this study, the midpoint of the canine, representing the developmental period of 3.5 years, was calculated for each tooth. Episodes were coded as occurring before 3.5 years and after 3.5 years (Table 28). Three and a half years is also the age at which central incisal crown development

Figure 59. Deciduous mandibular dentition with a single non-linear hypoplastic pit in the right canine of a subadult aged 3–5 years (Burial 7). This individual also appears to have been anemic.

Figure 60. Permanent mandibular canine and lateral incisor with linear hypoplasia in a male aged 35–45 years (Burial 9).

Table 28. NYABG Canine Chronology Formula and Example Calculation: CH/6 = YGI 6.5 – (MID/YGI) = Age of Occurrence

Crown Height (CH) (mm)	Total Years of Development	Yearly Growth Increment (YGI)	at 3.5 Years	Hypoplastic Lesion Midpoint (mm)	Formula	Age of Occurrence (Years)
12.71	6	12.71/6 = 2.12	6.36	3.93	3.93/2.12 = 1.85	6.5 - 1.85 = 4.65

Table 29. Frequency of Hypoplasias in Males and Females at NYABG (n = 59)

Males (ı	n = 35)	Females (n = 24)		
Present	Absent	Present	Absent	
74.3% (n = 26)	25.7% (n = 9)	62.5% (n = 15)	37.5% (n = 9)	

Note: Six of the 65 individuals with adult dentition were too young to determine sex. Therefore, these individuals are not represented in the total number of males and females.

ends, providing a comparison of frequencies represented between the incisor and canine and between the correspondent ages of crown development within the canine.

Results

Among the 65 individuals with permanent dentition, 70.8 percent were hypoplastic. Frequencies for hypoplasia in permanent dentition were higher in the New York African Burial Ground sample than those observed in the enslaved populations of Catoctin Furnace, Maryland (Kelley and Angel 1987), or Newton Plantation in Barbados (Corruccini et al. 1985). The New York frequencies were lower than the total frequencies observed in the largely free and freed nineteenth-century Philadelphia First African Baptist Church (FABC) cemetery sample (Blakey et al. 1994) or enslaved African Americans buried in nineteenth-century Charleston, South Carolina, 38CH778 (Rathbun 1987). The difference in hypoplasia frequencies may reflect the time trajectories and geographic locations represented within these populations. A greater number of people within the New York African Burial Ground and Barbados sites more likely were born in Africa than would have been the case for the nineteenth-century African Americans in Philadelphia and the South. The latter group spent their lives within the conditions of slavery or as free people living under conditions of economic and social inequality.

The difference in hypoplasia frequencies for men and women in the New York African Burial Ground (62.5 percent of the women [n = 15] and 74.3 percent of the men [n = 26]) was not statistically significant, indicating that male and female children experienced similar frequencies of stress episodes from birth to the age of 6.5 years. However, the New York African Burial Ground sample does fall into the general pattern established by previous studies (mentioned earlier and here) indicating that the men have consistently higher percentages of hypoplasia than females (Khudabux 1991; Owsley et al. 1987; Rathbun 1987). Blakey and coworkers (1994) reported hypoplasia in 86 percent of the women and 92 percent of the men among 54 individuals from the FABC sample. Angel and coworkers reported that 71 percent of men and 43 percent of the women at Catoctin Furnace, Maryland, had hypoplasias. The Blakey et al. (1994) study of the Catoctin site indicates that women had higher frequencies of slight linear enamel hypoplasias; however, men had a greater frequency of moderate to severe hypoplasias (68 percent of males [n = 17] and 37.9 percent of females [n = 11]). Among the populations compared within this study, Rathbun (1987) reported the highest frequencies in men and women at the Charleston, South Carolina, site (71 percent in women and 100 percent for men). Tables 29 and 30 provide comparative frequencies and other data for the studies just discussed, and frequency data for the New York African Burial Ground sample are presented in Table 31.

Among the 99 New York African Burial Ground individuals within the canine and incisor studies (permanent and deciduous), 37.4 percent (n = 37) died before the age of 15 years, 86.5 percent of whom

Table 30. Comparison of Frequencies Reported in Skeletal Populations

Site/ Location	Region	Rural/ Urban	Historical Period	Hypoplasia Frequency/ Secondary Dentition (%)	Hypoplasia in Females (%)	Hypoplasia in Males (%)	Hypoplasia in Subadults/ Deciduous Dentition (%)
NYABG, New York	Northeast, North America	urban	1694–1794	70.8 (n = 46)	62.5 (n = 15)	4.3 (n = 26)	85.3 (n = 34)
Newton Plantation, Barbados	Barbados, West Indies	rural	1660–1820	54.5 (n = 56) ⁸			
FABC, Pennsylvania	Northeast, North America	urban	1821–1843	89 (n = 54) ^b	86 (n = 29) ^b	92 (n = 25) ^b	$92.5 (n = 30)^{\circ}$
Catoctin Furnace, Maryland	Southeast, North America	urban	1790–1820	46 (n = 7) ^d	43®	71	
					slight 79.3 (n = 23) $^{\circ}$	slight 68 $(n = 17)^{f}$	
					moderate to severe 37.9 (n = 11) [§]	moderate to severe 68 $(n = 17)^{f}$	
Charleston, South Carolina (38CH778)	Southeast, North America	rural	1840–1870	85 (n = 23) [⊈]	71 (n = 10) ^Ø	$100 \ (n = 13)^{9}$	

⁸ Newton Plantation site frequencies from Corruccini et al. (1985).

^b First African Baptist Church (FABC) adult frequencies reported from Blakey et al. (1994).

First African Baptist Church (FABC) frequencies in children cited from Rankin-Hill (1997).

Catoctin site frequencies reported from Kelley and Angel (1987) for overall frequencies.

Frequencies by sex for Catoctin Furnace are from Angel et al. (1987) and Blakey et al. (1994).

Frequencies reported by Blakey et al. (1994), representing frequencies of slight hypoplasia or moderate to severe hypoplasia within the Catoctin Furnace site.

⁹ South Carolina 38CH778 site frequencies for males and females from Rathbun (1987). Combined secondary dentition frequency calculated from male and female frequencies reported by Rathbun.

Age GroupFrequency Within Age GroupMen (n = 35)Women (n = 24)1-14 (n = 37)86.5% (n = 32)15-24 (n = 17)76.5% (n = 13)83.3% (n = 5 of 6)75.0% (n = 6 of 8)25-55+ (n = 45)66.7% (n = 30)72.4% (n = 21 of 29)56.3% (n = 9 of 16)

Table 31. NYABG Frequency of Hypoplasia by Age Group and Sex (n = 99)

Note: Three children within the 1–14 age category had permanent dentition.

(n = 32) had hypoplasias. Young adults who died between the ages of 15 and 24 years of age represent 17.2 percent of the population, 76.5 percent of whom had hypoplasias. A total of 45.5 percent of the people who died after the age of 25 years (n = 45), 66.7 percent (n = 30) of whom had hypoplasias. The frequency of childhood growth disruption is lowest in the oldest age-at-death groups.

Most of this sample experienced generalized stress in their childhood years. Individuals with permanent dentition (n = 65) representing the period of childhood between birth and 6.5 years of age had hypoplasia in 70.8 percent (n = 46) of the cases, overall. Notably, this frequency is about 20 percent lower than that for the Philadelphia FABC remains. Among children with deciduous dentition, 85.3 percent of the children (29 of 34) had hypoplasia, representing disrupted development between the fifth month in utero through the end of the first year of life. In contrast with the permanent dentition findings, this frequency is more than 20 percent higher than for the FABC.

If the FABC can serve as an operational reference point, one can ask why it is that the childhoods of those who died as adults in New York were relatively less stressed, and those who died as children in New York were relatively more stressed, in comparison with the Philadelphians who died in the 1830s and 1840s. The interpretation of this issue bears on the specific histories of in-migration in the two cities that will be addressed later in this chapter.

The foregoing data suggest that the individuals who experienced early stress episodes resulting in enamel hypoplasia were more likely to have died in childhood and that enslaved children in colonial New York experienced high levels of stress. The lower frequency of individuals with hypoplasia among those who were older than age 25 at death may reflect the forced migration of enslaved men and women arriving in colonial New York. These individuals seem more likely to have experienced childhood stress episodes in Africa than

in New York, and their lower defect frequencies might reflect childhood experiences elsewhere. The brisk importation, low fertility, and high child mortality of eighteenth-century New York meant that an African who lived there as an adult was more likely to have been born in Africa (or possibly the Caribbean) than to have been born and survived to adulthood in New York. Although some children were imported, those who died as children in New York seem more likely to have been born there than those who died there as adults. Hypoplasia frequencies in the dead children, therefore, seem most likely to reflect the conditions of New York. The data on lead and strontium content in teeth (see Chapter 6) support those assumptions about the nativity of young children.

Those who died between 15 and 24 years of age had intermediate frequencies of defects in the teeth that developed during early childhood, as shown in Figure 61. We also examined frequencies of hypoplasia in third molars that develop between 9 and approximately 16 years of age. The late childhood and adolescence stress represented by hypoplastic third molars was present in 44.4 percent (n = 12) of those who died between 15 and 24 years and was present in only 10.7 percent (n = 9) of those who died at 25 years of age and older, in whom we could observe third molars (Figure 62). These differences were statistically significant (Pearson chi-square with Yates Continuity Correction = 13.035, df = 1, p < .0005). Interestingly, the 15-24-year-olds would have died quite close to the time when these late stresses were occurring. The analysis of 111 individuals with third molars was conducted apart from our usual analysis of incisors and canines. The third molars are less sensitive to hypoplasia than are the anterior teeth and cannot be directly compared with them; however, these hypoplastic lesions may represent more severe episodes of stress (Goodman and Armelagos 1985).

Based on historical documentation of importation ages, we suspect that many of the 15–24-year-olds

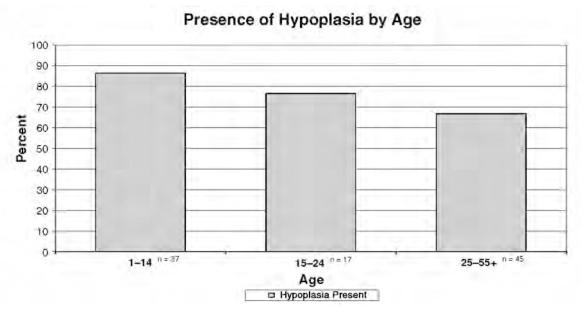


Figure 61. NYABG presence of hypoplasia by age (n = 99).

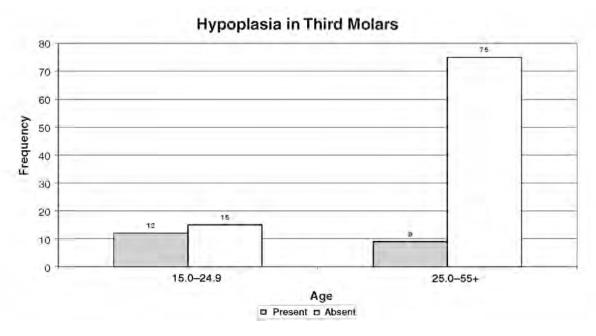


Figure 62. NYABG hypoplasia in third molars (n = 111).

were likely, because of age, to have been new arrivals through the trade in human captives, with the Middle Passage constituting another plausible stressor for them. Fifteen years of age was also the beginning of adulthood in most eighteenth-century censuses in New York; 10 years of age was the criterion of adulthood less frequently used. Studies of active periosteal lesions in this group showed more new infection in the 15–24-year age range than among the older individu-

als who exhibited a preponderance of sclerotic and healed lesions. Mortality was also very high among the 15–24-year-old males and females, as is detailed in other chapters. Changing conditions of life either through forced migration or/and adult status may be involved in these effects.

The skewing of subadult nativity toward New York, and the skewing of adult nativity toward central and West Africa may help explain low frequencies of

hypoplasia in adults and high frequencies in subadults, when compared to nineteenth-century Philadelphians. The FABC, conversely, shows relatively low frequencies in subadults and high frequencies in adults. This may also be related to different places and conditions of childhood for those who died as children and those who died as adults in Philadelphia, as African births probably were not a major factor in mid-nineteenthcentury Pennsylvania. Among the FABC sample, subadult nativity should be skewed toward Philadelphia, as similarly those who died as children in New York were also often born there. Philadelphia in the midnineteenth century can be characterized as having a free, disenfranchised, predominantly impoverished, unskilled wage-laboring black community. There was mobility toward greater economic stability among some blacks in the early part of that century, but this was halted during a peak period of Irish immigration into the city at about the time the FABC cemetery was in use (Du Bois 1899; Rankin-Hill 1997). These conditions were stressful, yet hypoplastic stress effects in these dead Philadelphian children were less frequent than in the enslaved children of colonial New York City.

The FABC adults, however, contained a large number of persons who were born and raised in bondage both in late-eighteenth-century slaveholding Pennsylvania and on the eighteenth- and nineteenth-century Southern plantations from which they were given manumission, bought their freedom, or escaped to Philadelphia (Rankin-Hill 1997).

For these FABC adults, their hypoplastic indicators of childhood stress were higher relative to those who died as New York Africans but whose childhoods were frequently spent in Africa. This interpretation of the data is assisted by the facts that the same researchers (and methodological training) were involved in both studies, both archaeological samples are sizable, both primary and secondary dentition were observed, and both sites are in the urban Northeast, thus greatly improving the reliability of comparisons.

Because much of this interpretation relies on the relation of hypoplasia frequency to age, one should examine the extent to which age-related occlusal wear might play a role in reducing our ability to observe hypoplasias, thus reducing the count of defects in older individuals. Subsets of the permanent dentition samples were created to control for the possible effect of dental attrition on hypoplasia frequencies between age and sex groups because of the loss of observable data through tooth wear. The incisor and canine study,

as well as the third-molar study, displayed the previously reported pattern of hypoplasia frequencies when attrition was controlled. The highest frequencies were found in individuals aged 15–24 years, and lower frequencies were found in individuals who lived to be 25 years of age and older. These differences were statistically significant in the third-molar analysis only (Pearson chi-square with Yates Continuity Correction = 10.678, df = 1, p < .002). Men had higher frequencies of hypoplasia than women within both age groups in the canine and incisor study. These gender differences were not statistically significant. Tables 32 and 33 provide a summary of hypoplasia frequencies within each study. These findings show that the observed decrease in hypoplasia frequencies for older age groups and the differential frequencies between men and women were not a result of lost data because of tooth attrition.

Maxillary central incisors are intrinsically the most sensitive to developing hypoplasias, among all teeth, followed by the mandibular canine (Goodman and Armelagos 1985a, 1985b). Within this study, we compared hypoplasia frequencies in the permanent maxillary central incisors and the mandibular canines in the New York African Burial Ground. Among the 65 individuals, 26 (40 percent) evinced hypoplasia in the maxillary central incisor versus 41 (63.1 percent) in the mandibular canines. Utilizing the overlap in developmental periods represented by these teeth (birth to 3.5 years in the central incisor and 0.5–6.5 years in the mandibular canine) while taking into analytical consideration the intrinsic sensitivity of incisors to hypoplasia in comparison with canines, we sought to assess the periods most stressful in early childhood between birth and 6.5 years for the New York African Burial Ground population.

Hypoplasia chronologies were calculated for the mandibular canines of 23 individuals (Table 34). Among the 37 hypoplasias recorded for these individuals, 73 percent occurred between the ages of 3.51 and 6.5 (n = 27). Analyzed by individual (n = 23) and age, hypoplasias developed between the ages of 3.51 and 6.5 years of age in 95.7 percent of the cases (n = 22). The maxillary incisor frequency may be compared with the mandibular canine chronology frequencies by individual for an analysis of hypoplasia within the most sensitive teeth, by age range—between birth and 3.5 years (evinced by the most sensitive tooth, the maxillary central incisor) and between 3.51 and 6.5 years of age (evinced by the canine, the most sensitive tooth for this developmental period). The

Table 32. NYABG Frequency of Hypoplasias in Canines and Incisors (Controlling for Attrition), by Age and Sex (n = 48)

Age Group	ı	requency within Age Grou	p
Age Gloup		Men (n = 24)	Women (n = 21)
15–24 (n = 16)	81.3% (n=13)	100% (n = 5)	75.0% (n = 6)
25–55+ (n = 32)	71.9% (n=23)	65.2% (n = 15)	34.8% (n = 8)

Note: Three individuals with adult dentition in the 15–24 age group were too young to determine sex. Thus, these individuals are not represented in the total number of males and females.

Table 33. NYABG Frequencies of Hypoplasias in Third Molars by Age Group, Controlling for Attrition (n = 97)

Age Group	Frequency within Age Group
15–24 (n = 26)	46.2% (n = 12)
25–55+ (n = 71)	12.7% (n = 9)

Table 34. NYABG Frequency of Hypoplasia by Age Intervals in Mandibular Canines, by Age Intervals (n = 37 Hypoplasias)

Age (in years)	Frequency
0.5–1	
1.01-2	
2.01–3	16.2% (n = 6)
3.01–4	18.9% (n = 7)
4.01–5	46.0% (n = 7)
5.01–6	18.9% (n = 7)
6.01–6.5	

difference between these two hypoplasia frequencies—40 percent (maxillary central incisors) and 95.7 percent (mandibular canines, between ages 3.51 and 6.5)—is, we believe, substantial when utilizing these data to understand stress episode frequency and quality of life in early childhood (Table 35).

Another factor that must be considered in the interpretation of the canine chronology data is the variability of susceptibility within tooth types. Goodman and Armelagos (1985b:485), studying the Dickson Mounds population, found mandibular canines to be most sensitive to enamel disruption between ages 3.5 and 4 years of age. Among the 23 New York African Burial Ground individuals in this canine chronol-

ogy study, only 13.5 percent (n = 5) of the stress episodes occurred during this peak period of enamel susceptibility. However, 59.5 percent (n = 22) of the hypoplasias occurred between 4.1 years and 6.5 years of age. These patterns are not consistent with Goodman and Armelagos (1985b). Thus, our finding that 95.7 percent of individuals developed hypoplasias in the mandibular canine between 3.51 and 6.5 years of age is likely a reflection of real age-related differences in stress frequencies, and not simply an artifact of enamel sensitivity.

The individuals within the age category of 1–14 years were more likely to have been born in New York than individuals who were older at the time of death.

Table 35. NYABG Comparison of Hypoplasia in Incisors and Canines

Tooth	Developmental Period/ Age (in years)	Frequency
Maxillary central incisor	0–3.5	40% (n = 26 of 65)
Mandibular canines	0.5-6.5	63.1% (n = 41 of 65)
Mandibular canine chronology	0–3.5 3.51–6.5	26.2% (n = 6 of 23) 95.7% (n = 22 of 23)

Note: Five individuals within the mandibular canine chronology study had multiple hypoplasias and are represented in both the 0–3.5 and the 3.5–6.5 developmental period/age category frequencies.

Their early deaths and high levels of stress indicators, such as hypoplasia, support an interpretation that these children were born into the arduous conditions of enslavement and therefore experienced greater levels of diseases and illnesses, possibly a consequence of being forced to work at young ages. The peak frequencies of hypoplasia between the ages of 3 and 4 years in secondary dentitions observed by Corruccini et al. (1985) among enslaved Barbadians were attributed to weaning at ages 2–3. Blakey et al. (1994) tested the weaning hypothesis within African American enslaved groups to argue that enslaved children experienced physiological stress from multiple sources and that weaning did not account for the peak in hypoplasia frequencies. Furthermore, Blakey's study suggests the need for historical and cultural contexts to be considered within a biocultural interpretation. The high frequencies of hypoplasia during the fifth year demonstrate that this stage was a vulnerable and stressful age for children who survived early infancy and who died as adults. This window on childhood appears to be most pertinent for those who were born in Africa, although childhoods in the Caribbean, New York, and other locations were doubtlessly mixed into our adult sample. How much more stressful the fifth year of age was compared to earlier ages, however, has not been confirmed using enamel defects because of variation in hypoplastic sensitivity across different parts of the crown. Moreover, these data represent the experiences of survivors, whereas the high death toll of infants clearly represents vulnerability and stress among those who did not survive to exhibit developmental defects in secondary teeth. Those deaths (see Chapter 7) clearly resulted from conditions in New York City, albeit precipitated partly by the poor health of captured mothers whose own experiences of childhood stress were relatively less frequent.

The project has used a political-economic framework for explaining biological variations in the New

York African Burial Ground sample. For example, Susan Goode-Null's (2002) study of childhood health and development in the New York African Burial Ground sample found that the enslaved people brought into New York between the years of 1664 and 1741 were largely from the Caribbean. Following McManus's A History of Negro Slavery in New York (1966), Goode-Null explained that between 1741 and 1770, because of the cessation of slave trading between the British and Spanish colonies and the fear that a slave revolt aborted in 1741 might repeat the events of the 1712 slave revolt in New York, enslaved Africans were imported directly from Africa, rather than via the Caribbean and were largely young women aged 13-40 years and children preferably of 9-10 years of age, rather than adult males. Adult enslaved men from the Caribbean were considered the strategists behind the successful and aborted revolts (Goode-Null 2002:28; see also Chapter 13 in this volume and Medford [2009] for further reference to these factors).

These historical data suggest at least two additional interpretations. One explanation assumes that many children experiencing stress episodes during the ages of 3.5-6.5 years and who lived to adulthood, were born within the colony of New York. Goode-Null's study reported that enslaved children in New York were frequently sold by the age of 6 years (Goode-Null 2002:37-38; Medford 2009). Advertisements indicated that domestic skills promoted the marketability of enslaved children. Therefore, it is likely that children approaching the age of 6 years may have experienced trauma related to separation from their parents, differential nutrition provisions provided by nonparental custodians or slaveholders, or stresses and increased exposure to disease from induction into domestic or other labor duties. Children under the age of 15 were highly stressed, and approaching the age of 6 may have been a significant stage within the

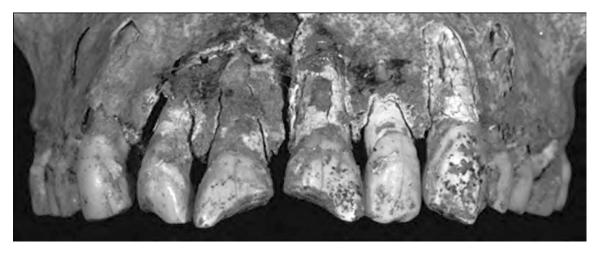


Figure 63. Dental modification.

life histories of children born within the legal status of "slave" in colonial New York. Furthermore, legal definitions of "adult" were applied to children over the age of 10 years in the 1731 and 1737–1738 censuses, and at 16 years in the census data prior to 1731 and after 1737-1738, including the 1810 census (see Chapter 13) (Goode-Null 2002). This legal status as "adult" would most likely have affected the character of labor expected of young enslaved Africans under the age of 15 and within the age group of 15–24. These data further suggest that a child approaching the age of 9 or 10 may have been prepared for an occupational position through entry into labor training and work. Substantial third-molar defect frequencies, especially for those who died between 15 and 24 years of age, characterize stresses of older children and adolescents whether or not they were born in New York.

A second interpretation assumes the inclusion of children imported from Africa to New York, again around the age of 9 or 10, as enslaved laborers. These children may have experienced high levels of physiological stress during their earlier childhood, related to shifts in political power and socioeconomic upheaval within the Atlantic slave trade networks that may have factored into their enslavement. Also, children under the age of 15 years could likely have experienced the Middle Passage prior to their arrival in New York. Any of a host of other possible inadequacies of the large, stratified agrarian societies from which they derived may have contributed to moderately high hypoplastic frequencies in the childhoods of those who died as adults in New York. Consistent with other findings of this study, most of the stresses shown by adult teeth

were likely produced by factors within their native African environments with a minority of the adult teeth developing during childhoods in New York. The high frequency of third-molar hypoplasias in those who died between 15 and 24 years of age also suggests effects deriving from arrivals in New York between 9 and 16 years of age in at least 44 percent of the individuals. Those who lived to old age showed far less stress during 9–16 years of age than those who died shortly after arrival in New York.

Our observation that those who lived the longest also had the lowest evidence of childhood stressors may suggest that higher chances of survival to adulthood are associated with having lower stress in childhood, irrespective of where the childhood took place. An attrition of hypoplastic individuals that is associated with age has been postulated elsewhere (Blakey and Armelagos 1985). These are not mutually exclusive propositions; those born in Africa may have had fewer childhood stressors and survived to older ages at death in New York than those who were born in New York City.

One approach to this question has been to compare hypoplasia frequencies for individuals with culturally modified teeth to those without such modifications (Figure 63 and Table 36). Handler's historical study (1994) and our chemical research (see Chapter 6) strongly suggest that modified teeth most frequently indicate African birth. Individuals without cultural modification (probably both African and non-African born) had higher frequencies of hypoplasia than individuals with modified teeth (modified, 66.7 percent [n = 6]; unmodified, 71.4 percent [n = 40]).

Table 36. NYABG Hypoplasia in Culturally Modified and Unmodified Permanent Teeth

Culturally Modified (n = 9)	Unmodified (n = 56)				
66.7% (n = 6)	71.4% (n = 40)				

The mean ages at death for individuals with modified and unmodified teeth were comparable, although slightly older for individuals with modified teeth (34 years of age for individuals with modified teeth and 31 years for individuals with unmodified teeth). Although consistent with the association between African birth and lower defect frequencies, these differences were not statistically significant at the p < .05 level. Chemical and mtDNA analyses will provide greater insight into these interpretations. Indeed, chemical sourcing data would add greatly to the conclusiveness of these tests by providing an independent method of identifying place of birth in at least 200 New York African Burial Ground individuals; this should be done in a future study.

The highest levels of hypoplasia were found within the individuals with deciduous dentition and may therefore represent effects of prenatal stress experienced by the mother during pregnancy. Furthermore, the decreasing frequencies of hypoplasia exhibited by individuals who lived longer suggest a relationship between stress episodes indicated by hypoplasias and a decreased life span.

Dental Enamel Hypocalcification

A study of dental enamel hypocalcification was conducted to assess frequencies within a subsample of 99 individuals. This subject had permanent dentition,

including a left or right maxillary central incisor and a left or right mandibular canine, and also included children with deciduous left or right maxillary incisors, left or right mandibular canines, and a second molar.

Within this study of the New York African Burial Ground sample, 67.6 percent (n = 23) of the 34 children with deciduous dentition had hypocalcification (Table 37). Among the 65 individuals with permanent dentition, 18.5 percent (n = 12) had hypocalcification. Women had a higher frequency of hypocalcification than did men (72.7 percent of the 24 females versus 27.3 percent of the 35 males).

Within this subsample, 60.5 percent (n = 23) of the 38 children under the age of 15 years had hypocalcification (see Table 37), whereas only 10 percent (n = 2) of the 20 young adults aged 15–24.9 years and 28.6 percent (n = 10) of the adults aged 25 and older had hypocalcification (see Table 37). These differences were statistically significant (Pearson chisquare = 19.84, df = 2, p < .0005) and mainly reflects the change from predominantly primary to secondary teeth by age 15. The difference between hypocalcification frequencies found in individuals with deciduous dentition (67.6 percent, n = 23) and permanent dentition (18.5 percent, n = 12) should not be considered in the same manner in which this age-related pattern in hypoplasia has been considered. Deciduous dentition is more likely to become hypocalcified than to exhibit hypoplasia, and deciduous dentition typically displays

Table 37. NYABG Comparison of Hypocalcification and Hypoplasia Frequencies by Age Group (n = 99)

Age Group	Percentages within Age Groups				
(in years)	Hypocalcification	Hypoplasia			
1–14	62.2 (n = 23)	86.5 (n = 32)			
15–24	10 (n = 2)	80.0 (n = 16)			
25-55+	28.6 (n = 10)	66.7 (n = 30)			

Note: Three subadults in the 1.0–14.9 age range had permanent teeth. These individuals are only represented once within the combined studies of permanent and deciduous dentition.

higher frequencies of hypocalcification in comparison to permanent dentition (Blakey et al. 1997). Thus, the observed low frequency of hypocalcification in permanent dentition follows the expected pattern caused by suspected intrinsic differences between deciduous and permanent dentition that may have nothing to do with stressor prevalence. Comparisons of hypocalcification across primary and secondary dentition are therefore inappropriate.

However, comparison of the two defect types within deciduous dentitions is of interest. Deciduous dentition forms in utero and continues into the first year of life and therefore represents early childhood development and a measure of prenatal health and the health status of the mother. Hypocalcification and hypoplasia frequencies were both highest in children dying prior to the age of 15 years, demonstrating high physiological stress and vulnerability during the prenatal and early childhood years. The higher levels of hypoplasia (86.5 percent) versus hypocalcification (65.7 percent) within deciduous dentition (n = 34) is unexpected, however, given the tendency of deciduous teeth to preferentially exhibit hypocalcification. Hypoplasia frequency in this case is extraordinarily high compared to other deciduous dental studies using similar methods (Blakey and Armelagos 1985; Blakey et al. 1994, 1997; Rankin-Hill 1997). Both defect frequencies indicate the extremely high levels of stress experienced in utero and during the first year of life among the New York African Burial Ground children who died before the age of 15.

Conclusions

Historical data on the ages of children who were in various stressful contexts have been applied to explain

developmental defect frequencies that occurred at different ages in the childhood and adolescent periods of the life cycle. Children likely born in colonial New York within the condition of slavery were more vulnerable to health risks and early death due to nutritional deficiencies and illness than is evident for the childhoods of those who were likely to have been born in Africa. The findings of this study suggest disparity between early childhood health and nutrition for individuals more likely to have been born in colonial New York and individuals likely to have been born as free people in the agricultural villages of the war-torn states of central and West Africa (see Medford 2009). The fact that higher frequencies of enamel defects were found in children under the age of 15 and among individuals without dental modification, than among individuals who were most likely to have been born in Africa (older individuals and those with modified teeth), supports this hypothesis. The chronology of physiological insults resulting in hypoplasia further supports the vulnerability of childhood and adolescence for enslaved Africans in New York.

The third-molar data reflect the trajectory of life experience for individuals, most of whom were likely to have been born in Africa and enslaved in the Americas. Significantly higher hypoplasia frequencies found in the third molars representing the developmental period of 9–16 years correspond with historical data indicating high levels of importation of older children, adolescents, and young adults in the eighteenth century. These findings indicate that the quality of life for Africans was greatly compromised upon entry into the New York environment of enslavement through the processes of either birth or forced migration.

CHAPTER 9

Odontological Indicators of Disease, Diet, and Nutrition Inadequacy

M. E. Mack, A. H. Goodman, M. L. Blakey, and A. Mayes

The dentition is usually the best-preserved element of the skeleton. Hydroxyapatite, an inorganic calcium matrix, comprises approximately 97 percent of the chemical composition of enamel (Carlson 1990). This crystalline structure makes dental enamel hard and dense and useful to resist the abrasive nature of mastication. Also, as a result of their hardness, teeth are often all that remains of a long-deceased individual. The abundance of dentition in archaeological contexts has led to the intensive exploitation of teeth for information about the past. Chapters 6 and 8 of this report address the systemic effects of nutrition in dental development and of ecosystem relationships that changed dental chemistry. In addition, the relative presence or absence of pathological conditions, such as tooth loss, caries (cavities from dental decay), and associated abscesses of the alveolar bone surrounding the dental root and cervix also provide evidence of the general level of biological well-being, accessibility of dental care, and the biological effects of foods commonly eaten.

In order to further understand the diets and living conditions of individuals from the New York African Burial Ground, in this chapter we summarize traditional odontological methods for assessing the local effects of different foods within the oral cavity itself. We specifically focus on dental caries, dental abscesses, and tooth loss. Subsections include discussion of the frequencies of subadult and adult dental diseases as well as the differences found in adult males and females. Finally, comparisons of infectious dental pathologies (caries, associated abscesses, and antemortem tooth loss) will be made between the New York African Burial Ground sample and other skeletal samples that may have experienced similar life conditions. We also briefly discuss a few cases of micro- and macrodontia.

Sampling

For a variety of reasons, sample sizes for each pathological observation vary. Much of the variation centers on not only the relative state of preservation of the teeth but also the condition of the surrounding alveoli. In many cases, teeth were recovered, but the surrounding alveoli were too poorly preserved for observations of pathology. Likewise, many dentitions were part of, and encased in, cranial pedestals, often obscuring a complete side of the dental arcade in cases where teeth were too friable to remove in an observable state. Additionally, many teeth were covered with organic or diagenic staining due to the local soil conditions, water seepage and damage, and the time elapsed since interment (Figure 64). This discoloration is not to be confused with enamel hypocalcification; it often affected dental roots and the surrounding alveoli that were exposed as a result of postmortem deterioration, as well as dental enamel. Calculus deposits built up on tooth surfaces, and although these deposits were usually removed, calculus sometimes prevented pathological observations. Finally, antemortem tooth loss and traumatic fractures, especially of the molars, precluded some diagnoses, and in the cases of the 26 individuals with dental modification, along with enamel being lost due to filing/chipping, some pathology information was lost as well (see Table 1).

After the skeletal remains of each burial were cleaned and reconstructed, the dentition for each burial (permanent and/or deciduous) was cleaned, identified, assessed, and curated separately by the Laboratory Director and his assistants. Data collection was performed under the guidelines set forth in *Standards for Data Collection for Human Remains* (Buikstra and Ubelaker 1994). Pathological recordation for the

Figure 64. Diagenic staining affecting dentition in a 55–65-year-old female (Burial 241).

Figure 65. Examples of the photographic record (Burial 95, a subadult aged 7–12 years).

deciduous and/or permanent teeth included dental inventories and tooth loss with alveolar resorption, caries reported by surface and number of caries by tooth, abscess presence and location (buccal, lingual, or exudative), and other pathological observations (molar agenesis, dental crowding, etc.). Dental caries is defined as a progressive tooth demineralization resulting from localized fermentation of food sugars and carbohydrates by bacteria (Mandel 1979). Dental caries formation, periapical abscessing, and antemortem tooth loss are all evidence of a disease process (Larsen 1997). A complete photographic record was constructed for each tooth, the overall dentition, and the maxillary and mandibular alveoli (Figure 65).

For example, in Figure 65, the plate on the left displays the occlusal surface of the maxillary dentition and alveoli, and the plate on the right provides an occlusal view of the mandibular dentition of Burial 95. This provides photographic evidence of dental observations.

Only dentitions from individuals with known sex and age (both adult and subadult) are used for the following dental pathology analysis. For these purposes, adults were defined as 15–60+ years of age, and subadults were defined as younger than 15 years

(14.99 and below). The rationale supporting these definitions and the use of only individuals with known sex and ages has been outlined above (see Chapter 7). It is a bit troublesome to have multiple definitions of "adulthood"—one for demographic purposes and another for other studies.

Infectious Pathology

Tables 38 and 39 contain, respectively for males and females, the frequencies of dental pathologies caries and abscesses—identified in the New York African Burial Ground sample. Caries were present in all tooth types. However, as expected, the highest frequencies of caries were found in molars, followed by premolars and single-cusped incisors and canines. The highest frequencies found in males were in the lower left first molar (37.74 percent), the lower left second molar (31.03 percent), and the upper right third molar (30.43 percent). The least carious tooth was the right lower second incisor (2.67 percent). As noted, no tooth type was caries free. Whereas just 3 teeth reached caries prevalence of over 30 percent in males, 13 teeth reach a similar threshold in females, including 11 of 12 molars and 2 premolars. As it did in

Table 38. Dental Pathology Frequencies in NYABG Males, Permanent Dentition

Tooth No.	Present	Absent	Total	Absent (%)	No. Caries	Caries (%)	No. Abscess	Abscess (%)
1) RM ³	69	8	77	10.39	21	30.43	7	10.14
2) RM ²	68	9	77	11.69	17	25.00	7	10.29
3) RM ¹	66	15	81	18.52	19	28.79	13	19.70
4) RP ²	71	9	80	11.25	14	19.72	8	11.27
5) RP ¹	73	10	83	12.05	17	23.29	8	10.96
6) RC ¹	77	5	82	6.10	11	14.29	1	1.30
7) RI ²	72	6	78	7.69	9	12.50	0	0.00
8) RI ¹	70	10	80	12.50	10	14.29	1	1.43
9) LI¹	71	8	79	10.13	10	14.08	3	4.23
10) LI ²	75	8	83	9.64	7	9.33	2	2.67
11) LC ¹	72	8	80	10.00	12	16.67	5	6.94
12) LP ¹	64	13	77	16.88	14	21.88	4	6.25
13) LP ²	64	14	78	17.95	12	18.75	6	9.38
14) LM ¹	64	14	78	17.95	12	18.75	11	17.19
15) LM ²	64	14	78	17.95	13	20.31	10	15.63
16) LM ³	66	9	75	12.00	15	22.73	10	15.15
17) LM ₃	58	27	85	31.76	15	25.86	6	10.34
18) LM ₂	58	25	83	30.12	18	31.03	7	12.07
19) LM ₁	53	28	81	34.57	20	37.74	8	15.09
20) LP ₂	72	9	81	11.11	12	16.67	0	0.00
21) LP ₁	81	5	86	5.81	6	7.41	3	3.70
22) LC ₁	80	5	85	5.88	8	10.00	2	2.50
23) LI ₂	78	5	83	6.02	4	5.13	0	0.00
24) LI ₁	70	10	80	12.50	2	2.86	1	1.43
25) RI ₁	70	7	77	9.09	3	4.29	1	1.43
26) RI ₂	75	7	82	8.54	2	2.67	0	0.00
27) RC ₁	79	6	85	7.06	5	6.33	2	2.53
28) RP ₁	79	7	86	8.14	15	18.99	2	2.53
29) RP ₂	82	9	91	9.89	13	15.85	2	2.44
30) RM ₁	56	31	87	35.63	11	19.64	2	3.57
31) RM ₂	64	23	87	26.44	19	29.69	6	9.38
32) RM ₃	63	23	86	26.74	14	22.22	3	4.76

Key: (1) RM3 = upper right third molar; (2) RM2 = upper right second molar; (3) RM1 = upper right first molar; (4) RP2 = upper right second premolar; (5) RP1 = upper right first premolar; (6) RC1 = upper right first canine; (7) RI2= upper right second incisor; (8) RI1= upper right first incisor; (9) LI1= upper left first incisor; (10) LI2= upper left second incisor; (11) LC1 = upper left first canine; (12) LP1 = upper left first premolar; (13) LP2 = upper left second premolar; (14) LM1 = upper left first molar; (15) LM2 = upper left second molar; (16) LM3 = upper left third molar; (17) LM3 = lower left third molar; (18) LM2 = lower left second molar; (19) LM1 = lower left first molar; (20) LP2 = lower left second premolar; (21) LP1 = lower left first premolar; (22) LC1 = lower left first canine; (23) LI2 = lower left second incisor; (24) LI1 = lower left first incisor; (25) RI1 = lower right first incisor; (26) RI2 = lower right second incisor; (27) RC1 = lower right first canine; (28) RP1 = lower right first premolar; (29) RP2 = lower right second premolar; (30) RM1 = lower right first molar; (31) RM2 = lower right second molar; (32) RM3 = lower right third molar.

Table 39. Dental Pathology Frequencies in NYABG Females, Permanent Dentition

Tooth No.	Present	Absent	Total	Absent (%)	No. Caries	Caries (%)	No. Abscess	Abscess (%)
1) RM ³	40	12	52	23.08	12	30.00	3	7.50
2) RM ²	48	6	54	11.11	16	33.33	3	6.25
3) RM¹	40	13	53	24.53	14	35.00	5	12.50
4) RP ²	47	9	56	16.07	13	27.66	2	4.26
5) RP ¹	43	16	59	27.12	14	32.56	3	6.98
6) RC ¹	55	4	59	6.78	11	20.00	2	3.64
7) RI ²	47	7	54	12.96	14	29.79	2	4.26
8) RI ¹	46	4	50	8.00	11	23.91	3	6.52
9) LI¹	47	6	53	11.32	10	21.28	3	6.38
10) LI ²	49	6	55	10.91	13	26.53	2	4.08
11) LC ¹	53	3	56	5.36	6	11.32	4	7.55
12) LP ¹	45	11	56	19.64	11	24.44	3	6.67
13) LP ²	46	7	53	13.21	12	26.09	2	4.35
14) LM ¹	41	11	52	21.15	15	36.59	7	17.07
15) LM ²	51	5	56	8.93	19	37.25	6	11.76
16) LM ³	44	11	55	20.00	15	34.09	2	4.55
17) LM ₃	38	19	57	33.33	12	31.58	3	7.89
18) LM ₂	41	19	60	31.67	12	29.27	7	17.07
19) LM ₁	29	25	54	46.30	16	55.17	7	24.14
20) LP ₂	51	7	58	12.07	8	15.69	3	5.88
21) LP ₁	57	4	61	6.56	7	12.28	0	0.00
22) LC ₁	59	4	63	6.35	9	15.25	2	3.39
23) LI ₂	54	5	59	8.47	8	14.81	1	1.85
24) LI ₁	57	4	61	6.56	1	1.75	1	1.75
25) RI ₁	52	5	57	8.77	2	3.85	0	0.00
26) RI ₂	56	5	61	8.20	9	16.07	1	1.79
27) RC ₁	56	7	63	11.11	9	16.07	2	3.57
28) RP ₁	52	5	57	8.77	20	38.46	5	9.62
29) RP ₂	49	9	58	15.52	8	16.33	1	2.04
30) RM ₁	32	27	59	45.76	12	37.50	6	18.75
31) RM ₂	40	20	60	33.33	12	30.00	2	5.00
32) RM ₃	39	17	56	30.36	15	38.46	3	7.69

Key: (1) RM3 = upper right third molar; (2) RM2 = upper right second molar; (3) RM1 = upper right first molar; (4) RP2 = upper right second premolar; (5) RP1 = upper right first premolar; (6) RC1 = upper right first canine; (7) RI2= upper right second incisor; (8) RI1= upper right first incisor; (9) LI1= upper left first incisor; (10) LI2 = upper left second incisor; (11) LC1 = upper left first canine; (12) LP1 = upper left first premolar; (13) LP2 = upper left second premolar; (14) LM1 = upper left first molar; (15) LM2 = upper left second molar; (16) LM3 = upper left third molar; (17) LM3 = lower left third molar; (18) LM2 = lower left second molar; (19) LM1 = lower left first molar; (20) LP2 = lower left second premolar; (21) LP1 = lower left first premolar; (22) LC1 = lower left first canine; (23) LI2 = lower left second incisor; (24) LI1 = lower left first incisor; (25) RI1 = lower right first incisor; (26) RI2 = lower right second incisor; (27) RC1 = lower right first canine; (28) RP1 = lower right first premolar; (29) RP2 = lower right second premolar; (30) RM1 = lower right first molar; (31) RM2 = lower right second molar; (32) RM3 = lower right third molar.

Table 40. New York African Burial Ground Total Number of Carious Teeth, by Sex

No. of Carious Teeth	Male (%)	Female (%)	Total (%)
0	27.1 (n = 26)	15.7 (n = 11)	22.3 (n = 37)
1	11.5 (n = 11)	10.0 (n = 7)	10.8 (n = 18)
2	6.3 (n = 6)	10.0 (n = 7)	7.8 (n = 13)
3	5.2 (n = 5)	5.7 (n = 4)	5.4 (n = 9)
4	6.3 (n = 6)	12.9 (n = 9)	9.0 (n = 15)
5	10.4 (n = 10)	10.0 (n = 7)	10.2 (n = 17)
6	12.5 (n = 12)	7.1 (n = 5)	10.2 (n = 17)
7	7.3 (n = 7)	2.9 (n = 2)	5.4 (n = 9)
8	2.1 (n = 2)	7.1 (n = 5)	4.2 (n = 7)
9	2.1 (n = 2)	1.4 (n = 1)	1.8 (n = 3)
10	1.0 (n = 1)	4.3 (n = 3)	2.4 (n = 4)
11	3.1 (n = 3)	1.4 (n = 1)	2.4 (n = 4)
12	1.0 (n = 1)	4.3 (n = 3)	2.4 (n = 4)
13	2.1 (n = 2)	0.0 (n = 0)	1.2 (n = 2)
14	0.0 (n = 0)	0.0 (n = 0)	0.0 (n = 0)
15	1.0 (n = 1)	1.4 (n = 1)	1.2 (n = 2)
16	0.0 (n = 0)	2.9 (n = 2)	1.2 (n = 2)
17	1.0 (n = 1)	0.0 (n = 0)	0.6 (n = 1)
18	0.0 (n = 0)	1.4 (n = 1)	0.6 (n = 1)
18+	0.0 (n = 0)	1.4 (n = 1)	0.6 (n = 1)
Total	100 (n = 96)	100 (n = 70)	100 (n = 166)

males, the lower left first molar displayed the highest frequency of caries in females (55.17 percent).

The prevalence of dental abscesses was also greatest in molars. In males, the highest prevalence of abscessing was found on the upper right first molar (19.70 percent) followed by the contralateral upper left first molar (17.19 percent). Interestingly, in females, the highest frequency of abscessing was found in the lower left first molars (24.14 percent) and right first molars (18.75 percent).

Most adults (72.9 percent of males and 84.3 percent of females) had at least one carious tooth (Table 40). Historical data show that the average diet for anyone living during the colonial period was high in carbohydrates such as corn or wheat flour and sugar, either refined, in its raw state or in the form of molasses, which often led to caries formation (see Medford,

Brown, Carrington, et al. 2009b).

Some caries were so severe that the entire tooth was affected with inflammation and infection of the surrounding alveolar bone. The fact that many of the abscesses were untreated reflects the paucity of dental and overall medical care available to the individuals comprising the New York African Burial Ground sample (Figure 66). Table 41 summarizes the mean and standard deviations for the number of carious, abscessed, and lost teeth and total pathologies—that is, the total chance of having at least one of these three conditions. As was suggested by individual tooth percents in Tables 38 and 39, females had a higher average rate of carious teeth (5.2) compared to males (4.0) (see Table 41). Females also had lost more teeth than males (4.3 vs. 3.7, respectively), and thus females had higher rates of total pathology (10.9 vs.

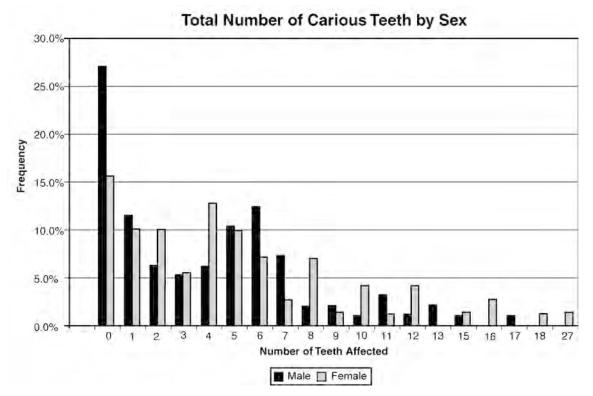


Figure 66. Total number of carious teeth by sex.

Table 41. Dental Pathology Frequency by Sex for the Permanent Dentition of Individuals from the New York African Burial Ground

Males and Females – Permanent Dentition									
Sex	No. Teeth Lost	No. Caries	No. Abscesses	Total Pathology					
Males (n = 96)									
Value	3.7	4.0	1.5	9.1					
Standard deviation	(5.4)	3.9	2.6	9.0					
Females (n = 70)									
Value	4.3	5.2	1.4	10.9					
Standard deviation	6.2	5.1	2.7	9.1					
Total (n = 166)									
Value	4.0	4.5	1.4	9.9					
Standard deviation	5.7	4.5	2.7	9.1					

9.1 teeth). On average, nearly 10 teeth (9.9, s.d. = 9.1) per permanent dentition were either lost, carious, or abscessed (Figures 67–69).

As young children are weaned onto solid foods, they lose the immunological and nutritional advantages of mother's milk. This can be significant for marginally nourished populations for which the solid

food diet is composed mainly of carbohydrates in the form of breads and cereal grains and either raw or processed sugars. Weaning and poor nutrition, coupled with little access or knowledge of dental care, initiates the disease process of caries and abscess formation, along with tooth loss (Figures 70 and 71). The frequency of dental caries and abscesses in the decidu-

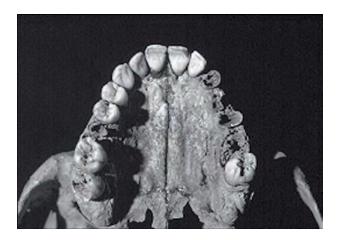


Figure 67. Molar caries in a male aged 26–35 years (Burial 101).

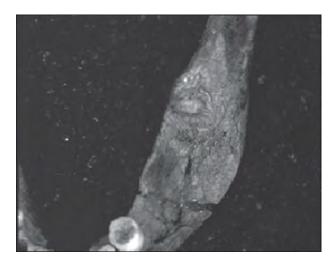


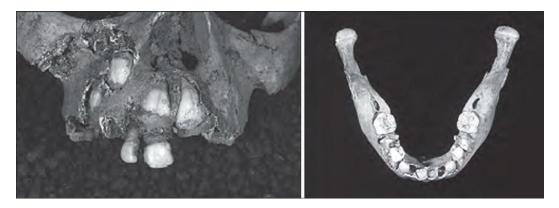
Figure 68. Abscessing in a female aged 25–35 years (Burial 266).

Figure 69. Caries formation in a female aged 35–40 years (Burial 107).

ous dentition is presented in Table 42. Because these teeth are in the mouth for a shorter length of time, the rates of dental pathology are much lower compared to the permanent teeth. For example, only two cases of dental abscessing were found. However, many teeth displayed dental cavities, including 18 percent of the upper left first deciduous molars. As with the permanent teeth, deciduous molars were more carious than single-cusped deciduous teeth.

The following section will compare dental pathologies in the New York African Burial Ground sample with other contemporary and modern samples. Tables 43 and 44 provide a comparison of the rates of dental pathologies found in the present study compared to previously published results. Statistical comparisons are not made because of variation in methods and low sample sizes. As is true for the New York African Burial Ground, the general trend appears to be greater dental pathology in females than males. Caries rates were highest in the FABC sample from Philadelphia but also high in many of these samples (see Table 43). The New York African Burial Ground results fall toward the high end of the middle of the range. Tooth loss was also highest in the FABC and free blacks from Arkansas, with the New York African Burial Ground results falling toward the middle of the range. Finally, the abscess rate was greatest in the New York African Burial Ground (see Table 43), which may be a reflection of poor dental care when compared to later populations, as well as a lack of access to any dental care due to the social inequalities.

The mean number of pathological teeth per mouth in the New York African Burial Ground versus select other samples is presented in Table 44. These data also suggest that the prevalence of dental pathologies in the New York African Burial Ground is near the average of frequencies found at other archaeological sites. New York frequencies are high compared to other eighteenth-century samples, however.


Genetic Dental Pathology

Genetic dental pathologies are inherited in the form of one or more alleles, although environmental stressors play a supporting role in their expression (Scott and Turner 1997). These include hypodontia (tooth agenesis), hyperdontia (supernumerary teeth), dental crowding, cleft palate, and abnormal tooth retention or exfoliation. Amelogenesis imperfecta, which produces distinctively severe enamel developmental defects, is

70.0% 60.0% 50.0% 40.0% 20.0% 10.0% 0 1 2 3 4 6 7 9 10 15 Number of Teeth Affected

Total Number of Teeth Affected by Caries in Subadults

Figure 70. Total number of teeth affected by caries in subadults.

☑ Subadult

Figure 71. Caries, abscessing, and enamel hypoplasia in a subadult aged 5–7 years (Burial 39).

a form of hypoplasia and hypocalcification (see Chapter 8). The following section contains examples of dental genetic anomalies from the New York African Burial Ground, including dental hypodontia, dental crowding, and hyperdontia.

Subadult Dentition

One subadult, Burial 17, exhibited hypodontia of the deciduous left maxillary central incisor (Figure 72). Although this may be interpreted as exfoliation, there is no corroborating evidence that the tooth was ever present. This child was also afflicted with craniosynos-

tosis, rickets, enamel hypoplasia and hypocalcification, and a cleft palate. Radiographic analysis of the maxilla and mandible also indicated substantial dental crowding of the permanent dentition.

Dental crowding is the only genetic pathology that affects subadults with any appreciable frequency (Figure 73). Among subadults with intact dental arcades, eight (9.9 percent) exhibited crowding of the deciduous teeth, especially the mandibular incisors. Additionally, radiographic observations indicated that all but one of the eight subadults affected also exhibited dental crowding of the permanent maxillary and mandibular incisors.

Tooth No. Absent (%) No. Caries Caries (%) No. Abscess **Present Absent Total** Abscess (%) 1) rm² 67 1 68 1.47 10.45 1.49 71 2 2.74 9 2) rm¹ 73 12.68 3) rc¹ 1.54 7 10.94 64 1 65 4) ri² 3 4.62 5 8.06 62 65 5) ri¹ 5 7 59 7.81 64 11.86 6) li¹ 56 5 61 8.20 6 10.71 7) li² 2 1 60 62 3.23 1.67 8) 1c1 3 64 64 4.69 9) lm¹ 72 1 73 1.37 13 18.06 10) lm² 71 71 11 15.49 75 75 10 13.33 11) lm, 84 10 12) lm, 83 1 1.19 12.05 13) lc, 68 1 69 1.45 3 4.41 14) li, 60 5 65 7.69 1 1.67 15) li, 6 62 9.68 56 16) ri, 52 6 58 10.34 57 5 8.06 2 17) ri, 62 3.51 2 65 3.08 4 18) rc. 63 6.35 19) rm, 78 1 79 1.27 11 14.10 1 1.28 80 80 12 15.00 20) rm₂

Table 42. Dental Pathology Frequency, Deciduous Dentition

Key: (1) RM² = upper right second molar; (2) RM¹ = upper right first molar; (3) RC¹ = upper right first canine; (4) RI² = upper right second incisor; (5) RI¹ = upper right first incisor; (6) LI¹ = upper left first incisor; (7) LI² = upper left second incisor; (8) LC¹ = upper left first canine; (9) LM¹ = upper left first molar; (10) LM² = upper left second molar; (11) LM₂ = lower left second molar; (12) LM₁ = lower left first molar; (13) LC₁ = lower left first canine; (14) LI₂ = lower left second incisor; (15) LI₁ = lower left first incisor; (16) RI₁ = lower right first incisor; (17) RI₂ = lower right second incisor; (18) RC₁ = lower right first canine; (19) RM₁ = lower right first molar; (20) RM₂ = lower right second molar.

Adult Dentition

Observable genetic dental pathologies were extremely rare in adults. Only one adult exhibited hypodontia; Burial 176, a 20–24-year-old male, exhibited alveolar resorption, and his relatively young age, with no tooth loss or caries formation, confirms the assessment of tooth agenesis (Figure 74).

Only two individuals exhibited hyperdontia. Burial 12, a 35–45-year-old female, had a supernumerary tooth at the location for the mandibular right first premolar, thereby obstructing its eruption (Figure 75). Burial 176, a 20–25-year-old male, had

a supernumerary tooth adjacent to lingual side of the maxillary left second premolar. The only other genetically caused dental pathology present in adults was dental crowding. Dental crowding was exhibited in five (0.5 percent) of the adults, specifically in the mandibular incisors.

Conclusions

Overall, we found a high rate of tooth loss, caries, and abscessed teeth. The rates of pathology, especially of dental abscesses, were high in comparison to other

Table 43. New York African Burial Ground Dental Pathology Mean Comparison with other Eighteenthand Nineteenth-Century Samples (Rathbun and Steckel 2002)

Site/Sex	No. Teeth Lost	No. Carious Teeth	No. Abscesses	
African Burial Ground, New York				
Male	4	4	1.5	
Female	4	5	1.4	
Remley Plantation, South Carolina				
Male	7	2	0.5	
Female	12	4	0.1	
Belleview Plantation, South Carolina				
Male	5	6	_	
Female	6	3	0.3	
Charleston elites, Charleston, South Carolina				
Male	_	_	0.3	
Female	2	1	1.0	
FABC, Philadelphia, Pennsylvania				
Male	7	7	1.0	
Female	5	9	1.0	
Black soldiers, South Carolina				
Male	1	2	1.0	
Blacks, Arkansas				
Male	6	5	0.6	
Female	8	4	0.4	
Blacks, Texas				
Male	3	4	0.1	
Female	3	4	0.1	
Rochester Poorhouse, New York				
Male	5	5	1.0	
Female	5	6	0.9	

groups of the same period. Females generally had a higher rate of dental pathologies than males.

In addition to other hardships, it appears that individuals from the New York African Burial Ground had to endure the pain of dental pathologies and possibly changes in diet because of their decreased ability to

masticate. The overall high rate of dental pathology may reflect deficiencies in diet and dental hygiene. These results provide additional evidence of poor dietary regimens, unhealthy living conditions, and lack of dental care that characterized the quality of life for the majority of those who lived in bondage.

Table 44. New York African Burial Ground Dental Pathology Mean Comparison with Other Eighteenthand Nineteenth-Century Samples (modified from Kelley and Angel 1987:204)

	Dental Pathologies per Mouth per Individual							
Sex	Eighteenth Century	Catoctin	Nineteenth Century	Forensic Twentieth Century	NY African Burial Ground			
Female	11.8 (9.8) (n = 12)	11.0 (9.6) (n = 8)	9.1 (11.3) (n = 16)	10.3 (8.5) (n = 27)	10.9 (9.1) (n = 70)			
Male	8.0 (7.7) (n = 16)	14.4 (10.0) (n = 7)	9.6 (8.4) (n = 25)	14.1 (7.8) (n = 46)	9.1 (9.0) (n = 96)			
Male and female	9.6 (n = 28)		9.4 (n = 41)	12.8 (n = 73)	9.9 (n = 166)			

Note: Standard deviations are in parentheses.

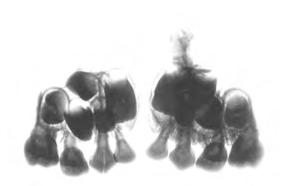


Figure 72. Radiograph of incisor hypodontia in a subadult aged 4–6 years (Burial 17).

Figure 73. Dental crowding in a subadult aged 5–7 years (Burial 39).

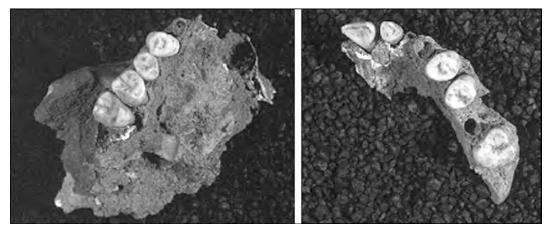


Figure 74. Maxillary molar agenesis in a male aged 20–24 years (Burial 176).

Figure 75. An example of a supernumerary tooth in a female aged 35–45 years (Burial 12).

CHAPTER 10

Osteological Indicators of Infectious Disease and Nutritional Inadequacy

C. C. Null, M. L. Blakey, K. J. Shujaa, L. M. Rankin-Hill, and S. H. H. Carrington

Introduction

The present chapter investigates the prevalence of infectious diseases and nutritional inadequacies in the New York African Burial Ground sample, as represented in bone. A broad range of skeletal indicators of pathology was assessed in the Cobb Laboratory. Diagnoses of specific diseases represented by skeletal indicators were usually attempted, as per the long-standing standards of paleopathologists. Data were also gathered in accord with the more strictly descriptive criteria of the new Standards for Data Collection from Human Skeletal Remains (Buikstra and Ubelaker 1994). Indeed, the pathology coding section of Standards is clearly the most novel and complex feature of the guide, and we think it constitutes a significant forward step in paleopathologic methodology. Yet, as one of the first projects to use and test the Standards in their entirety, we found the strict pathology coding approach to be somewhat cumbersome and time-consuming. To mitigate this problem, we developed pathology codes for computerization that saved time and effort without the loss of useful information. Therefore, the skeletalpathology and nonmetric-trait computer database developed at the New York African Burial Ground Project is a simplified version of the pathology portion of the Standards (Buikstra and Ubelaker 1994:107–158).

The modifications of the New York African Burial Ground pathology database simply improved efficiency for coding complex descriptions of the type, appearance, severity, and location of pathologies and interesting anatomical features for computerization and statistical manipulation. The information captured by these codes was consistent with the Standards, as well as with the previous protocol of the Paleopathology Association and our own and other researchers' earlier approaches to data collection. For example, we established that severity descriptors such as "trace" (Kelley and Angel 1987) or "slight" (Blakey et al. 1994) are close to the Standard's use of "barely discernable," whereas observations of greater magnitude such as "moderate, severe, or extreme" easily fall within the "clearly present" category of the *Standards*. Indeed, this simple two-tier severity (or clarity) rating of the Standards, barely discernable compared to clearly present, accomplishes its goal of classification that many specialists can agree on and that can be compared across many studies, including those conducted before the creation of the new standards. Because our project developed during this methodological transition, data were gathered deliberately to bridge the old and new methodologies. Pathology assessments were rendered as text that includes many diagnoses as well as descriptors that were converted into four-letter codes. In the future, these bench-top diagnoses should be of interest, and the descriptive coding will provide the nearly raw data from which alternative diagnoses may be made. In this chapter, we have relied principally on the use of our coded data.

This adapted coding system facilitated direct synthesis of pathology assessments, especially the ability to combine nominal, observed characteristics of an individual or group and combine these to create more complex diagnoses. This allowed us to produce clinically meaningful categories of pathology from the wealth of descriptors in our database (16,635).

observations of pathology). Care was taken to retain the level of specificity, clear terminology, and emphasis on description (rather than specific pathological diagnoses) that was emphasized in the *Standards* (Buikstra and Ubelaker 1994:107–108).

It should be noted that some distinctions such as those made between active and healed, and "reactive woven bone" and "sclerotic" lesions, required considerable subjective evaluation (Figures 76–79). As with other qualitative descriptions, we feel that the large number of observations made in this study substantially reduces the effects of errors due to possible misidentification or miscoding of marginal cases. The statistical associations found between plausibly associated variables support a swamping effect on any marginal errors.

Three hundred six of a total of 419 individuals in the New York African Burial Ground exhibited at least one identifiable pathology or nonmetric skeletal trait. An additional 52 individuals were assessed although no abnormalities were observed. It must be noted, however, that this number includes individuals who were very poorly preserved but whose "observable" skeletal elements or fragments did not present evidence of abnormalities. Sixty-one of 419 individuals were not assessed for pathologies or nonmetric skeletal traits; the majority of these (n = 55) were too poorly preserved to be evaluated.² Of these 61, 5 individuals were quarantined because of potentially harmful fungi found in pedestal soil and therefore could not be assessed. We also did not assess Burial No. 100, a young subadult in poor condition, who remained in an earthen pedestal intermingled with its badly decayed coffin. Therefore, for purposes of this study, we used and analyzed a total sample size of 358 individuals (Table 45). This sample included 105 subadults younger than 15 years old, 237 adults 15 years old or older (115 males, 85 females, 37 adults of indeterminable sex, and 16 individuals for whom age and sex were undeterminable).³ Although these sample sizes will be used in general statements regarding disease prevalence, in cases where a more restricted sample size was warranted (e.g., numbers of investigated crania for porotic hyperostosis), sample sizes were generated with the aid of the skeletal inventory database.

The central focus of this chapter is the prevalence of general and specific indicators of infectious disease and nutritional inadequacy observed in the New York African Burial Ground skeletal sample. General infectious periostitis is considered first. We report prevalence of cases, healed versus active lesions, and the age and sex distributions of those affected. These data are followed by comparative analysis with data from the FABC, a nineteenth-century free urban sample (Rankin-Hill 1997); 38CH778, a southern plantation population, 1840–1870 (Rathbun 1987); and Cedar Grove, a post-Reconstruction rural population (Rose and Santeford 1985) (Table 46). Following discussion of general infectious disease, the occurrence of specific disease indicators will be considered, with specific emphasis on treponemal disease. We then combine the New York African Burial Ground skeletal data with historical information and discuss the potential type, and/or types, of treponemal infection present in this sample. These findings are compared to the high rates of syphilis found at the Waterloo Plantation population from Suriname (Khudabux 1991).

The potential for metabolic disruption resulting from nutritional inadequacy, as exhibited by the presence of porotic hyperostosis, will be addressed in the second section. The rates of porotic hyperostosis exhibited in the individuals of the New York African Burial Ground will once again be compared primarily to those

¹ We refer to *observable* remains as the precise technical category of bones well-enough preserved to give clear evidence of the presence or absence of pathology. Observable bones in the 52 individuals showed no pathology. Yet, these were skeletons with few observable bones, and many bones were in such poor condition as to provide no information, possibly hiding additional pathologies. We treat them nonetheless as the sample of nonpathological or reasonably healthy persons.

² As entirely *unobservable* these individuals cannot be shown to be healthy or pathological and are removed from our statistical treatment altogether.

³ For purposes of this study, individuals whose sex determination was uncertain, i.e., identified as "possible male" or "possible female," were included in the "male" and "female" categories. One individual, Burial 358, was identified as a female; however, an age was undetermined. This individual was included as an adult female for purposes of generating a population size, but was not included in any assessments of pathologies discussed in this chapter.

With respect to age, 5-year demographic age groups (see Table 45) were used when discussing population prevalence of a particular anomaly. However, when sample sizes warranted, e.g., subadults, larger groupings were used. Different groupings were also used in interpopulation comparisons because of inconsistent age grouping strategies. The only difficulty encountered was individuals with a composite age of 15. In this chapter, individuals with a composite age of 15 are included as adults, and as such are not included in the subadult comparisons. It was found that although this exclusion had an effect on the frequencies generated, it did not change overall conclusions made in this chapter.

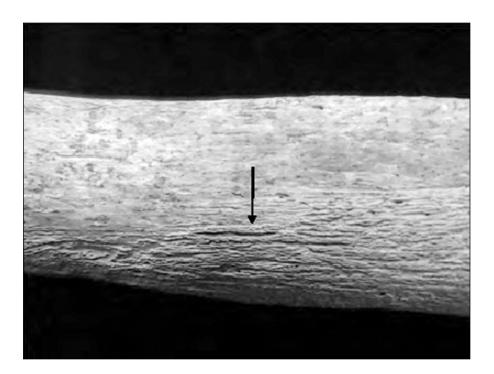


Figure 76. Active periostitis on left posterior ulna of a 35–45-year-old male (Burial 70).

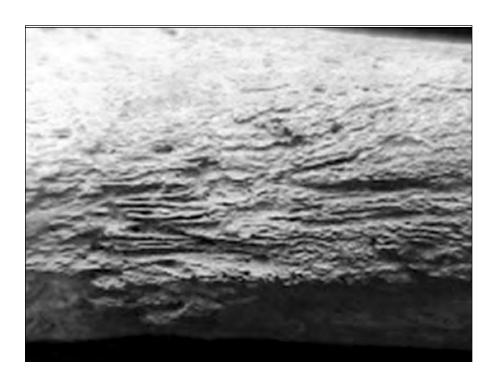


Figure 77. Active periostitis on left posterior ulna of a 35–45-year-old male, magnified (Burial 70).

encountered within the Cedar Grove, 38CH778, and FABC samples. The possible presence of rickets or vitamin-D deficiency will be considered based on the presence of bilateral medial-lateral bowing of long bones of the lower limbs. The third and final section

will assess the interaction of infection and nutritional inadequacy by investigating the co-occurrence of porotic hyperostosis and periostitis. Information from the New York African Burial Ground is then compared with available data from Cedar Grove and FABC.

Figure 78. Healed, sclerotic periostitis on right lateral tibia of an adult male (Burial 69).

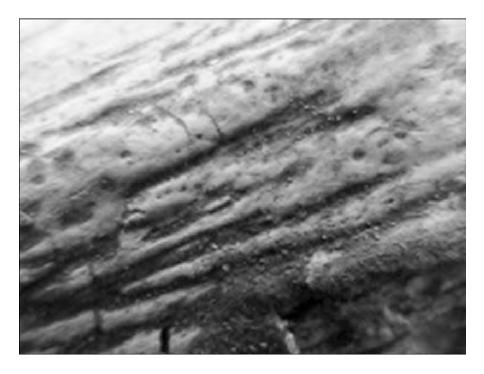


Figure 79. Healed, sclerotic periostitis on left lateral tibia of a 45–50-year-old male, magnified (Burial 20).

Overall, this chapter relates the New York African Burial Ground paleopathology to the New York historical documentation. Therefore, the chapter tests the historical conclusions (see Medford, Brown, Carrington, et al. 2009b) concerning the exposure of enslaved Africans to infectious pathogens in New York and prior to their involuntary transport to the New World.

Table 45. Age and Sex of Assessed Sample from NYABG

Age in Years		Total		
Age in Tears	Male	Female	Unknown	iotai
.0049			23	23
.5099			14	14
1.0–1.9			12	12
2.0–2.9			3	3
3.0-3.9			6	6
4.0–4.9			10	10
5.0-5.9			3	3
6.0–6.9			2	2
7.0–7.9			5	5
8.0–8.9			3	3
9.0–9.9			5	5
10.0–10.9			3	3
11.0–11.9			0	0
12.0–12.9			4	4
13.0–13.9			3	3
14.0–14.9			2	2
Subadult (no specific age assigned)			7	7
15.0–19.9	7	8	4	19
20.0–24.9	10	5	1	16
25.0–29.9	7	4	2	13
30.0–34.9	10	16	2	28
35.0–39.9	12	9	0	21
40.0–44.9	18	5	0	23
45.0–49.9	17	8	2	27
50.0–54.9	15	5	1	21
55+	6	8	0	14
Adult (no specific age assigned)	13	16	25	54
Undetermined	0	1	16	17
Total	115	85	158	358

Table 46. African Diaspora Skeletal Series Discussed in this Chapter

Site/Location	Time Periods	Total Number of Skeletons	Life Style	Reference
Newton, Barbados	1660–1820	104	plantation enslaved	Jacobi et al. 1992
New York African Burial Ground	1694–1794	419 (358 assessed for pathology)	urban enslaved	
St. Peter Street Cemetery, New Orleans [®]	1720–1810	29	urban enslaved	Owsley et al. 1987
Catoctin Furnace, Maryland	1790–1820	31	industrial enslaved	Kelley and Angel 1987
Waterloo Plantation, Suriname	1793/ 1796–1861	25	plantation enslaved	Khudabux 1991
FABC—8th and Vine, Philadelphia	1821–1843	144	ex-slaves/freeborn	Rankin-Hill 1997
38CH778, South Carolina	1840–1870	36	plantation enslaved	Rathbun 1987
Cedar Grove Cemetery, Arkansas	1890–1927	79	rural farmers	Rose and Santeford 1985

Note: Adapted from Rankin-Hill 1997:47.

Infectious Disease

Assessment of skeletal pathology observed in the individuals from the New York African Burial Ground yielded numerous cases of bony response to infectious agents. The most common of these lesions was abnormal bone found on the outer, or periosteal, surface of skeletal elements. This abnormality, commonly termed periostitis or periostosis, 4 can be the result of specific disease (e.g., direct bone infection or trauma) or as part of a broader expression of infectious disease (e.g., treponemal infection) (Ortner 2003:207–208). With the possible exception of traumatic periostitis,⁵ the case can be made that most periostitis is associated with an infectious agent. For the purposes of this chapter, the presence of periostitis is initially discussed as a general indicator of infectious disease. In the subsequent discussion of treponemal disease, periostisis is considered a specific expression of this disease.

Over half, 200 (55.9 percent) of the individuals in the New York African Burial Ground sample were affected by generalized infectious disease or periostitis (Tables 47 and 48). All but 15 of these individuals, 92.5 percent, exhibited more than one infectious locus, including 44 subadults and 153 adults, or 41.9 percent and 64.6 percent, respectively, of these age groups. Among subadults, femora were the most common element affected, followed by the humeri and tibiae. In contrast, among adults, the tibiae were the most commonly impacted, followed by the femora and fibulae.

Regarding severity, among those 200 that exhibited periostitis, 74 (37.0 percent) individuals had at least one lesion that was assessed as "clearly present" (as opposed to "barely discernable" or no severity determined). Among subadults, 3 of the 44 (6.8 percent) exhibited at least one periostitic lesion that was assessed as clearly present. Adults displayed a significantly⁶ higher proportion of individuals with clearly present lesions; this included 68, or 44.4 percent, of those with periostitis. Periostitis prevalence varied little between males and females—81 (70.4 percent) in males and 60 (70.6 percent) in females. However,

n = 29; 13 African Americans.

⁴ Ortner (2003:51–52) noted that periostosis, rather than periostitis, is the "more appropriate term" for such conditions; however, he continues to use the more common periostitis in his most recent volume because there is less common usage of periostosis in the medical literature.

⁵ However, it could be argued that many cases of trauma-related periostitis may be the result of secondary infection.

 $^{^6\,}$ A p value of .05 was used in all statistical tests to determine significance.

Age/Sex Total **Clearly Present** Active Healed **Both** n Category (%) (%) (%) (%) (%) Subadult 105 41.9 36.4 22.7 9.1 6.8 Adult 237 44.4 1.3 73.9 19.6 64.6 Female 85 70.0 21.7 70.6 35.0 Male 115 70.4 54.3 1.2 76.5 19.8 358⁸ Total 55.9 37.0 9.0 63.0 17.0

Table 47. Occurrence and Status of Generalized Infectious Disease

Note: "n" equals the number of individuals assessed for pathology. Status values represent the percentage in each group of those with evidence of generalized infectious disease; "missing" percentages represent those whose lesions were unassessed/unassessable for status.

Generalized Infectious Clearly Present Status of Lesions Disease Presence/Absence Presence/Absence χ^2 χ^2 χ^2 p р Subadult/Adult 15.288 < .001 20.988 73.473 < .001 < .001 Male/Female .001 .981 5.178 .023 .084* .772

Table 48. Generalized Infectious Disease Statistical Testing, Intra-Population

Note: Conditions for 2 by 3 contingency table were not met, x^2 reflects the collapsing of "Active" and "Both" categories.

males did have a statistically significant higher incidence of individuals with lesions classified as clearly present. Forty-four, or 54.3 percent, of the males with periostitis, showed clearly present lesions, compared to 21, or 35.0 percent, of the females.

Of the 200 individuals with periostitis in the New York African Burial Ground, 126 (63.0 percent) exhibited only healed lesions, 18 (9.0 percent) displayed only active lesions, and 34 (17.0 percent) had a combination of both active and healed lesions. Among adults with periostitis, 113 (73.9 percent) displayed healed periostitis; 2 (1.3 percent) displayed active lesions, and 30 (19.6 percent) had both active and healed lesions. Differentiated by sex, adult males and females displayed only slight differences (not statistically significant) in the status of periosteal lesions: healed—62 (76.5 percent) for males and 42 (70.0 percent) for females; active—1 (1.2 percent) in males and 0 in females; and both active and healed—16 (19.8 percent) for males and 13 (21.7 percent) for females. In subadults, of those who had periostitis, 10 (22.7 percent) exhibited healed lesions, 16 (36.4 percent) displayed active lesions, and 4 (9.1 percent) had a combination of both healed and active lesions. Not surprisingly, those under 1 year of age expressed only active periostitis, having died before observable healing could have occurred. Compared to adults (p < .001), those who died as children were prone to dying during their first active infection that was sufficiently severe to leave bony evidence. The dental developmental defects discussed in Chapters 8 and 12 suggest that the majority of older children had experienced bouts of disease and nutritional stress earlier in their lives that left evidence in the disrupted development of teeth, if not in the bone. As subsequent discussion explores, these pathology indicators in bone represent the "tip of an iceberg" of disease and ill health that for various reasons will often leave the skeleton unaffected.

When compared with periostitis rates for the FABC (Rankin-Hill 1997), 38CH778 (Rathbun 1987), and Cedar Grove (Rose and Santeford 1985), the New York African Burial Ground sample exhibited similar, slightly lower infection frequencies than found in the populations at 38CH778 and Cedar Grove, though

^aDiscrepancies in sample numbers are the result of individuals that could not be aged and/or sexed.

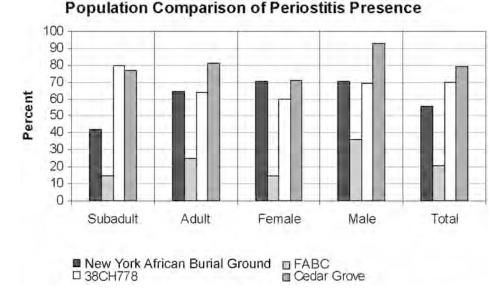


Figure 80. Population comparison of periostitis presence.

African Burial Ground/ **African Burial Ground/ African Burial All Populations FABC Cedar Grove Ground/38CH778** Age/Sex Category χ^2 χ^2 χ^2 χ2 р р р 43.722 1.480^a .224 Subadult <.001 12.676 <.001 15.549 < .001 Adult <.001 35.443 <.001 3.600 .058 .033° 48.116 .857 Female 38.788 <.001 32.724 <.001 .037° .848 .265° .607 <.001 13.746 <.001 .053° Male 22.856 2.468^a .116 .818 Total >50.000 <.001 48.654 <.001 14.273 <.001 2.359 .125

Table 49. Generalized Infectious Disease Statistical Testing, Inter-Population

periostitis rates were higher than in the FABC population (Figure 80, Table 49). However, differences in rates found between 38CH778 and the New York African Burial Ground were not found to be statistically significant. When differentiated by age category, it was found that the New York African Burial Ground subadult infection frequency was intermediate between the high rates reported in Cedar Grove and 38CH778—although not statistically significant in

the case of 38CH778—and the lower rate observed in FABC. Among adults, rates of infection at the New York African Burial Ground were similar to the high prevalence found at Cedar Grove and in 38CH778. Females in the Cedar Grove and the New York African Burial Ground samples had nearly identical periostitis prevalence figures (approximately 71 percent).

Although not statistically significant, incidence figures for males from Cedar Grove (93 percent) exhibited a 22 percent higher incidence of periostitis than males from the New York African Burial Ground (70.4 percent). The periostitis rate among males from the New York African Burial Ground was most comparable to the rates observed in the 38CH778 South Carolina plantation population (69 percent).

^a Yeats Correction for Continuity used because of small "expected" cell values.

Although the attempt was made to ensure that similar skeletal lesions were being compared in all pathological conditions discussed in this chapter, possible interobserver variation between samples in the identification of these conditions can not be completely discounted. The possible effects that this could have on the analyses discussed in this chapter are unknown at this time.

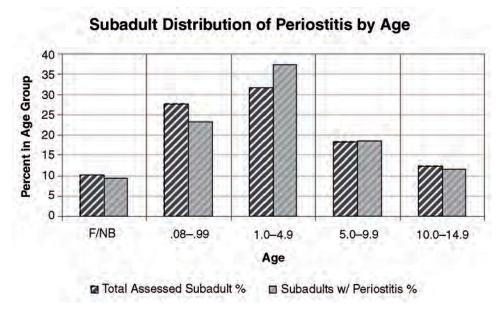


Figure 81. Subadult distribution of periostitis by age.

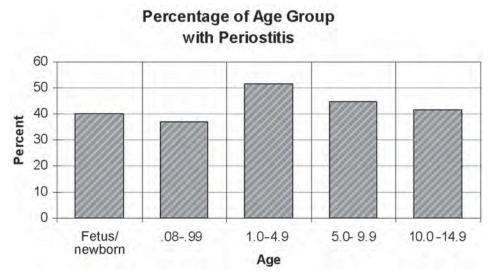


Figure 82. Percentage of age group with periostitis.

The distribution of subadults from the New York African Burial Ground sample that displayed generalized infection closely mirrors the overall age structure for this subgroup (Figure 81). The disparity observed in the two age distributions may reflect older individuals that survived previous episodes with infectious disease versus younger individuals who may have perished before skeletal involvement occurred. Interestingly, all individuals (n = 9) younger than 1 year exhibited only active lesions. It is in the

older 1.0–4.9 age group in which the first cases of healed lesions were encountered—two with only active lesions, five with only healed lesions, and two with a combination of healed and active lesions. Comparing individuals with periostitis in different age groups, an increase in prevalence encountered after the first year (Figure 82) may reflect individuals who survived earlier insults. The rate of infection appears to decrease once again in subadults after 5 years of age. Indeed, our mortality data show a decline and stabi-

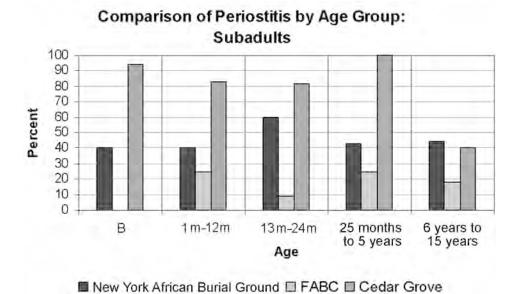


Figure 83. Comparison of periostitis by age group: subadults.

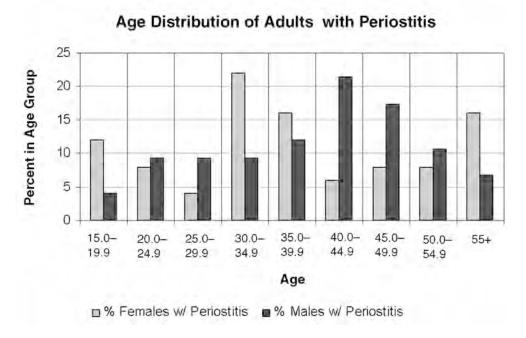


Figure 84. Age distribution of adults with periostitis.

lization in age-specific deaths among older children. Having weathered the vulnerable circumstances of infancy and weaning, older children usually did not see a major wave of new stresses until adolescence and young adulthood.

Subadult periostitis rates for the New York African Burial Ground sample fall between those from Cedar Grove and FABC in most age categories (Figure 83). The proportions of periostitis in the New York African Burial Ground are consistently higher than those

found in FABC and considerably lower than Cedar Grove. However, in the oldest age group the trend changes slightly, with the New York African Burial Ground 6–15-year-olds having a 4 percent higher rate (44.4 percent) of periostitis than individuals in the same age group from Cedar Grove (40 percent).

Males and females in the New York African Burial Ground sample presented generalized infection patterning (Figure 84) that mirrors their sex-specific mortality profiles. The frequency of periostitis is greater

Adult Distribution of Periostitis by Age and Sex 100 90 80 70 60 50 40 30 20 10 0 50.0 20.0 -25.0 -30.0-35.0 -40.0-45.0-15.0 -55+ 54.9 19.9 24.9 29.9 34.9 39.9 44.9 49.9 Age □ Female ■ Male

Figure 85. Adult distribution of periostitis by age and sex.

than 50 percent in most male and female age groups throughout the adult segment of the population (Figure 85). Figure 85 shows the greatest peaks in females at ages 35–39.9 and 55+, followed by lesser peaks in age groups 20.0–24.9 and 50.0–54.9. Both males and females display another peak at 55+, although this would not be unexpected given that this age group represents the potential accumulation of a lifetime of skeletal indicators of generalized infection.

When comparing these adult proportions to those of FABC and Cedar Grove, it is observed that, like the subadult pattern, the New York adults exhibited frequencies of infectious disease indicators that fell between these two examples (Figures 86 and 87). Once again the rates of periostitis among the adults at the New York African Burial Ground were higher than FABC, however, not as extreme as the rates found in the Cedar Grove population for most age groups. Only in the female 30.0–39.9 age range did the rate of periostitis in the New York African Burial Ground (76.0 percent) exceed the extraordinary rates reported for Cedar Grove (55 percent).

Other infectious processes observed in the New York African Burial Ground series include meningeal reactions. Meningeal reactions, as used in this study, refer to both hemorrhagic and inflammatory meningeal reactions (Schultz 2003:93–94). We would like to underscore at this time no diagnoses of specific meningeal diseases have been made. The generalized diagnosis of meningeal reaction was made in seven individuals: six were subadults younger than 6 years old and one was a 25–35-year-old female. The occipital bone was most commonly affected, although lesions were also found on the parietals and the frontal.

Osteomyelitis, abnormal bone formation possibly associated with bacterial infection, (Ortner 2003:181) was also observed within the New York African Burial Ground series. This infectious process was identified in five adults: two females (17–21 and 50–70 years old), two males (40–50 and 50–60 years old), and one individual of indeterminate sex and age. At least two elements were affected in all five individuals; however, there was no clear patterning of lesion locations suggestive of a specific pathogen in these individuals. The most severe case was found in Burial 32, a male 50–60 years old, who displayed systemic osteomyelitis (Figures 88 and 89).

A third example of specific infection is a constellation of pathologies that may reflect treponemal infection (Figure 90), including "saber shin," a feature associated with congenital syphilis and bejel (Ortner and Putschar 1981:210; Ortner 2003:278, 294; Steinbock 1976:102) or "boomerang leg" yaws

⁸ In the St. Peter Street Cemetery sample from New Orleans, six adults were found to have postcranial periostitis, generating a population prevalence of between 4.5 percent and 13.0 percent depending on the element considered (Owsley et al. 1987). Unfortunately, the small sample size and mixed ethnic background of this population limits any comparative statements that could be made.

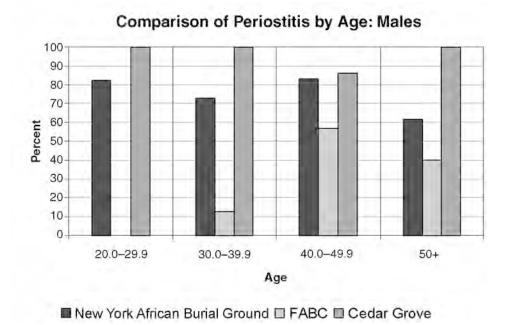


Figure 86. Comparison of periostitis by age: males.

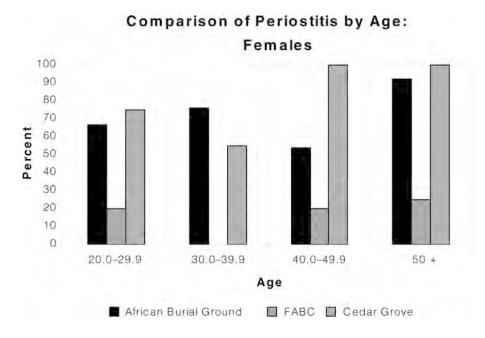


Figure 87. Comparison of periostitis by age: females.

(Ortner and Putschar 1981:180; Ortner 2003:275; Steinbock 1976:145). We observed no obvious evidence of "stellate scars" ("caries sicca"), frequently associated with the gummatous cranial lesions of venereal syphilis (Steinbock 1976:129) or yaws

(Ortner 2003:276) in the New York African Burial Ground sample. In total, 11 individuals (4 percent of those with observable tibiae) presented evidence of saber shin (Table 50). All but 1 of these were adult males; 8 were between the ages of 30.0 and 54.9 and 2 were of unknown adult age. The remaining individual was a skeleton of unknown sex and undeterminable age.

⁹ These two similar conditions, saber shin and boomerang leg, will be referred to singularly as saber shin for the remainder of the chapter.

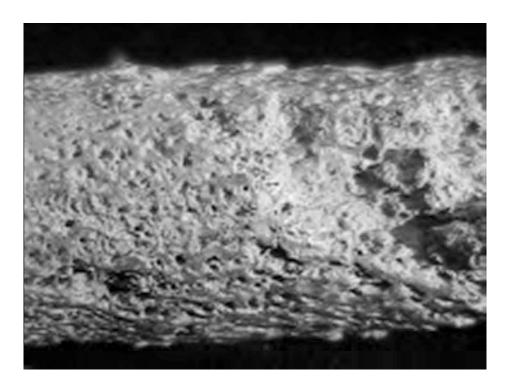


Figure 88. Osteomyelitis in the right anterior distal femur (Burial 32, 50–60-year-old male).

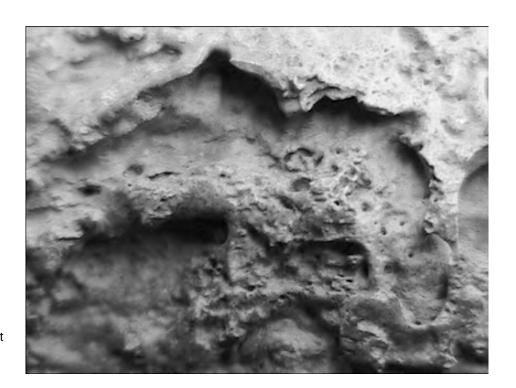


Figure 89. Osteomyelitis in the right anterior distal femur, magnified (Burial 32, 50–60-year-old male).

Figure 90. Left femoral midshaft of Burial 101 (26–35-year-old male, *top*) showing "saber shin" bowing in comparison to a healthy femur from the Cobb collection (CC2, *bottom*).

Table 50. Occurrence of Treponemal Infection Indicators

Age/Sex Category	n ^a	Saber Shin		Suite of Tibia	l Pathologies	Total with Treponemal Infection Indicators		
		n ^b	%	n [©]	%	n ^d	%	
Adult [®]	181	10	5.5	28	15.5	38	21.0	
Female	69	0	0.0	7	10.1	7	10.1	
Male	89	10	11.2	18	20.2	28	31.5	
Total series ^{®, f}	249	11 ^g	4.4	29	11.6	40	16.1	

^a Equals the number of individuals with observable tibiae.

From this baseline information, a database script was created to search for additional individuals that were not initially diagnosed with "saber shin" explicitly but whose skeletal changes were consistent with this diagnosis. The suite of descriptors we sought included periostitis, anterior bowing, medial-lateral

flattening (platycnemia), and/or fusiform expansion of the diaphysis/anterior crest. This combination of indicators (with the possible exception of the fusiform diaphysis) is definitive of "saber shin" and may be taken as an exhaustive sample of possible cases. This search yielded an additional 29 individuals that could

b Equals the number of individuals diagnosed with saber shin.

^c Equals the number of individuals exhibiting a suite of tibial pathologies indicative of treponemal infection.

d Equals the total number of individuals observed with these pathologies.

[®] Discrepancies in sample numbers are the result of individuals that could not be aged and/or sexed.

f The 249 "Total Series" includes all individuals with observable tibiae. This includes individuals who could not be specifically aged and/or sexed.

⁹ One subadult of unknown age and sex.

Table 51. Demographic Profile of Occurrence of Treponemal Infection
Indicators in the NYABG Population

Age Category, in Years	Male	Female	Unknown	Total
15.0–19.9	1	1	1	3
20.0–24.9	1	_	_	1
25.0–29.9	1	_	_	1
30.0–34.9	4	4	_	8
35.0–39.9	3	_	_	3
40.0–44.9	3	1	_	4
44.0–49.9	5	_	1	6
50.0–54.9	4	_	_	4
55 +	1	1	_	2
"Adult"	5	_	1	6
Total series	28	7	3	38

possibly have had treponemal infection, increasing the total to 40, or 16.1 percent, of individuals with assessable tibiae. None of these individuals appears to have been under the age of 15; however, two were of unknown sex and undeterminable age. This would correspond to 21.0 percent of those being affected. This number includes 7 females (10.1 percent of the observable females) and 28 males (31.5 percent of the observable males). Statistical testing found this difference to be significant ($\chi^2 = 10.241$, p = .001). The age profile for these individuals exhibits the highest frequencies of those affected between 30.0 and 54.9 years (males) and 30.0–34.9 years (females) (Table 51). These frequencies mirror the mortality curve of the population and may reflect age-specific risk.

These 40 individuals were then assessed for the presence of lytic and blastic lesions to evaluate lesion patterning and to assist in differential diagnosis between various treponemal infections. The tibia was by far the most commonly affected element, followed by the femur and fibula, sequentially. Overall, in most individuals (n = 30, or 75.0 percent) the lesions appeared healed, 1 person (2.5 percent) exhibited only active infection, and 9 individuals (22.5 percent) had a combination of active and healed lesions. Possible evidence of involvement in the facial area, which may be expressed in yaws, venereal syphilis, or congenital syphilis (Ortner 2003:277, 283, 293), was detected

in 7 individuals (17.5 percent). However, as noted previously, no stellate scars were detected on their cranial vaults.

Although the identification of specific treponemal diseases cannot be made with any certainty, some inferences can be made based on (1) the region where these individuals were living both prior to and during their enslavement in New York, (2) lesion patterning, and (3) historical documents. The location of New York, as well as the African locations from which these people originated, seems to effectively rule out the presence of endemic syphilis (bejel) and pinta. Endemic syphilis, although found in Africa, is typically located in arid climates in the Old World (Ortner and Putschar 1981:180; Steinbock 1976:138).

Pinta, which only impacts the skin of the affected individual, is found in tropical areas of the New World (Ortner and Putschar 1981:180; Steinbock 1976:91). This would limit possible sources of treponemal infection to yaws, venereal syphilis, and congenital syphilis.¹⁰

The apparent absence of stellate scars, often associated with venereal syphilis, would seem to argue

Although the potential for congenital transmission of yaws has recently been discussed (Ortner 2003:277), it is unclear at this time how this form of congenital treponemal infection can be differentiated from noncongenital yaws or other treponemal infections.

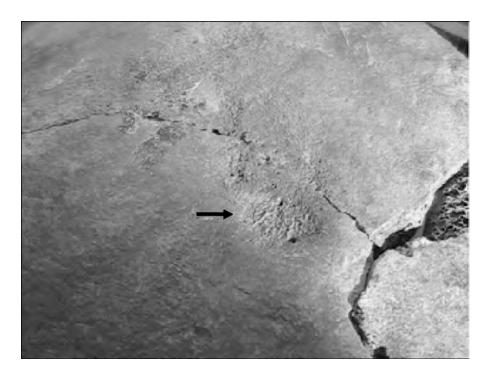


Figure 91. The cranial lesion (arrow) in the left parietal of a 55–65-year-old female (Burial 230) is more similar to stellate scars than any other lesion observed in the African Burial Ground population, yet it lacks the billowing of its margins and other typical characteristics of such scars (most probably a depression fracture).

Figure 92. Cobb Collection (CC101) Left femur showing cloacae in a person who died while diagnosed with syphilis in 1937 (*left*). An adult male 30–55 years of age in the New York African Burial Ground population (Burial 418) was found to have similar resorptive lesions in the right posterior proximal ulna (*center*) and left posterior proximal femur (*right*). Such diagnostic evidence of syphilis was otherwise not observed among the skeletal remains of New York Africans.

against the presence of this form of treponemal infection (Ortner and Putschar 1981:188–190; Steinbock 1976:129). This paucity of classic evidence of venereal syphilis is especially telling given the large size of the observable sample. Only one individual, Burial 230 (55–65-year-old female), exhibited a cranial lesion even slightly similar to a stellate scar; however, the lesion lacked some of the diagnostic characteristics of such lesions (Figure 91). Another individual, Burial 418 (30–55-year-old male), exhibited lytic lesions that could be interpreted as cloacae associated with venereal syphilis (Figure 92). Furthermore, although most, if not all, individuals discussed here were of sexually mature age, the presence of the saber

shin anomaly would seem to suggest involvement during their earlier growth and development.

Thus, the presence of the saber shin anomaly would suggest either congenital syphilis or yaws (Ortner and Putschar 1981:180, 210; Ortner 2003:275, 294; Steinbock 1976:102, 145). Furthermore, if congenital syphilis and yaws are considered the primary possibilities, it can be argued that onset occurred prior to arrival in New York. The historical documentation for this period suggests that venereal syphilis was rare in the regions of Africa where persons were being enslaved for transportation to the Americas (see Medford, Brown, Carrington, et al. 2009b). This reality, in conjunction with the fact that most women were

brought directly from Africa to New York, may reduce the frequency of venereal syphilis in this segment of the population. The high proportion of females to males in New York, a marked contrast to the Caribbean, would also reduce the accelerated contagion found in the Caribbean where a small proportion of females, often sexually exploited by slaveholders while sexually active with African men, could rapidly spread venereal disease to African compatriots (see Chapter 7 for discussion of sex ratios). However, New York males were often being brought from the Caribbean where venereal syphilis was known to have spread to substantial numbers of enslaved Africans.

These two trends together may help explain the disparity of treponemal infection that is seen in the sex distribution in the population of the New York African Burial Ground. If the dearth of lesions indicative of sexually acquired syphilis suggests a limited number of individuals in the population with this disease, then infection by congenital syphilis (from mothers at or before birth) may be coming from an affected external population. Fundamentally, congenital syphilis in a community requires venereal transmission of the disease in the community where its members were born in order for it to persist. This possibility would point mainly toward adults who were born in the Caribbean. Furthermore, if there was substantial venereal syphilis in colonial New York, the rates of the congenital disease among African adults would have been much attenuated by the very high mortality of infants that constituted a barrier to the proliferation of congenital disease.

On the other hand, this pattern of treponemal indicators may also point directly to yaws among Africanborn individuals. Yet, the temperate climatic zone of New York would not have been conducive to the transmission of this tropical disease. The fact that captives were being imported continuously, coupled with mortality and low fertility (see Chapter 13), supports the inference that high levels of yaws could have been sustained in New York.

Most of these infections may well have been yaws. The presence of yaws in North America is noted in historical documents (see Medford, Brown, Carrington, et al. 2009b). Yaws was also the focus of a court case in New York in which an enslaved African was found to have the disease after her purchase (see Medford, Brown, Carrington, et al. 2009b). Still, if the presence of yaws was used as a reason against purchase, then it is conceivable that this undesirable condition could lead to a slaveholder avoiding afflicted

individuals, thus possibly creating a reduction in the rates of disease in the population.

Whatever the nature of treponemal disease in the New York African Burial Ground, it is clear that the associated infection rates were neither as severe nor pervasive as those found in the Waterloo Plantation sample from Suriname (Khudabux 1991), where 56 percent were diagnosed as having treponemal infection, specifically venereal and congenital syphilis. This rate is much higher than the possible 16.1 percent found overall in the New York African Burial Ground sample, or the 21.0 percent observed in the adults. The vastly different sample sizes, 25 individuals at Waterloo Plantation versus the 249 individuals with observable tibiae discussed here, may influence the overall prevalence of infected persons. However, it must be noted that three individuals in the smaller Waterloo Plantation exhibited diagnostic stellate scars on the crania, whereas the New York African Burial Ground, a much larger series, had no definitive evidence of these lesions.11

Nutritional Inadequacy

The presence of porotic hyperostosis and diploic thickening were commonly found in the individuals of the New York African Burial Ground. The Standards operationally defines porotic hyperostosis as cranial pitting; however, evidence of thickened diploe was also included in this study as an important characteristic of porotic hyperostosis. Although often associated with anemia, particularly with iron deficiency anemia, current practice cautions against a direct correlation between anemia and porotic hyperostosis (Ortner 2003:55). Other disease processes that are implicated as possible causes of porotic hyperostosis include the nutritional disorders of scurvy and rickets, and infection (Ortner 2003:56, 383–418). At this time, radiographic data have not been investigated for the purpose of differential diagnosis. Furthermore, cranial cross-sectional data, although potentially informative in this regard, were not collected at the New York African Burial Ground.

¹¹ Jacobi et al. (1992) reported three cases of possible congenital syphilis (based on dental criteria) in the Newton Plantation sample. These three cases equated to 3.8 percent of the sample, from which the authors estimated an actual congenital syphilis rate of approximately 10 percent for the population (Jacobi et al. 1992:153–154). See the dental pathology chapter (see Chapter 11) for a thorough discussion of possible dental indicators of treponemal infection.

An association of porotic hyperostosis observed in the New York African Burial Ground sample with metabolic dysfunction due to inadequate nutrition (e.g., iron deficiency anemia, rickets, and scurvy) is not unexpected, given the stresses associated with enslavement. Genetic anemia, although potentially present, should be limited in expression. The high rate of mortality associated with sickle cell anemia, particularly prior to modern medical intervention, would preclude an individual's representation in this population past adolescence. Also, the low prevalence, 2-3 percent, of sickle cell anemia in Afro-Caribbean and West African populations (Serjeant 1981) would suggest a similar low incidence in the New York African Burial Ground. Infection as a possible source of porotic hyperostosis serves as the most likely confounding factor. Future studies that incorporate radiographic data will aid in the differential diagnosis of cases of porotic hyperostosis. For the purposes of this study, porotic hyperostosis is used as a general indicator of nutritional inadequacy.

The presence of nutritional inadequacy, as represented by porotic hyperostosis observed in crania, is presented in Figures 93–95 and Tables 52 and 53. Almost half—130, or 47.3 percent—of the 275 observable crania exhibited at least one occurrence of porotic hyperostosis. Male and female adults (93, or 50.5 percent) had a higher, although not statistically significant, incidence of this pathology than the subadults (35, or 39.8 percent). Two individuals were adults of indeterminate sex. Among the adults able to be sexed, adult males displayed a higher proportional rate of porotic hyperostosis (55, or 57.9 percent) than females (32, or 43.8 percent), although this was also not statistically significant.

Healed lesions were observed in 74 (88.1 percent) of individuals with porotic hyperostosis. Adults (59, or 89.4 percent) were marginally more likely than subadults (15, or 83.3 percent) to have only healed lesions, whereas subadults had a higher number of individuals with only active lesions (3, or 16.7 percent) than adults (1, or 1.5 percent). (Note: Status values represent the percentage of those in each group with evidence of porotic hyperostosis; cases of thickened diploe have been removed.) However, the difference in the status of the lesions between subadults and adults was not statistically significant. Although also not statistically significant, adult males exhibited a higher proportion of individuals with both active and healed lesions (5, or 11.4 percent), and included the only adult instance of solely active porotic hyperostosis. Females, correspondingly, had a higher incidence of individuals with only healed porotic hyperostosis (18, or 94.7 percent). (*Note:* Status values represent the percentage of those in each group with evidence of porotic hyperostosis; cases of thickened diploe have been removed.)

As illustrated in Figures 96 and 97 and Table 54, rates were generally lower for the presence of porotic hyperostosis in the orbits (cribra orbitalia) than for the rest of the cranium. Overall, 23.7 percent (54 individuals) of those with assessed orbits exhibited porotic hyperostosis. Subadults (18, or 28.6 percent) had a higher rate of involvement in the orbits than the adults (36, 22.0 percent), contrary to what was observed for grouped cranial locations. However, it was found that this difference was not statistically significant (Table 55). The pattern encountered with status of lesions of cribra orbitalia was similar to that found with porotic hyperostosis. Interestingly, all individuals that exhibited solely active porotic hyperostosis were found to have the location of the lesion in the orbits (one adult male, three subadults).

When compared with FABC (Rankin-Hill 1997), Cedar Grove (Rose and Santeford 1985), and 38CH778 (Rathbun 1987), the New York African Burial Ground sample (47.3 percent) had a higher overall rate of porotic hyperostosis (Figure 98, Table 56). Interestingly, the New York African Burial Ground rates of porotic hyperostosis were very similar to Cedar Grove between the subadults, however more similar to FABC in the adults. Focusing solely on pathology encountered in the orbits (Figure 99, Table 57), the New York African Burial Ground showed a similar population incidence as that found at Cedar Grove although less than that observed at 38CH778. The 38CH778 population displayed higher cribra orbitalia rates in all categories, however, only the total sample comparison was statistically significant. The similarity between the New York African Burial Ground and Cedar Grove diminished when the samples were partitioned by age; there were higher comparative rates found among subadults at Cedar Grove, conversely higher rates in adults at the New York African Burial Ground. The latter was statistically significant.¹²

¹² Two cases of cribra orbitalia, both adult females, were present in the St. Peter Street Cemetery sample equating to a population rate of 12.5 percent, or a sex-specific 33.3 percent rate among females (Owsley et al. 1987:190). Once again, however, these conclusions are limited by small sample size and mixed ethnic composition in the population.

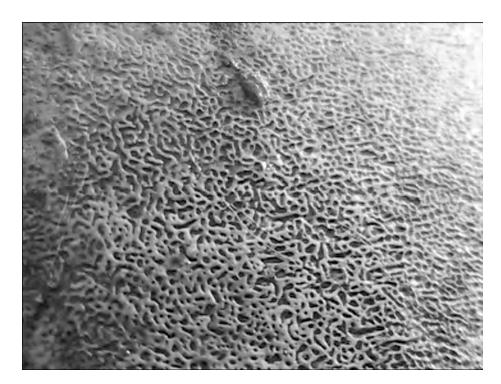


Figure 93. Porotic hyperostosis in right posterior parietal (Burial 138, 3–5 years old).

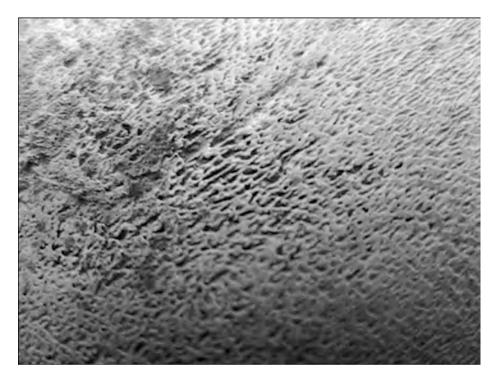


Figure 94. Porotic hyperostosis (Burial 64, 4.5–10.5 months old).

Porotic hyperostosis (all locations) in subadults was found most frequently in the 1.0–4.9 and 5.0–9.9 age groups (Figure 100). This pattern was also apparent when considering the prevalence of the disorder within age grades (Figure 101). The disproportionately lower

rates in the first year seem to suggest, similar to the periostitis rates, that the individuals in the older age grades may have survived earlier insults and that the younger individuals died prior to skeletal involvement of the pathology. Interestingly, all subadult cases of

Figure 95. Thickened diploe of occipital adjacent to lambda, compared with a normal specimen at the same location (Burial 151, 35-45-year-old male).

Table 52. Porotic Hyperostosis, All Cranial Locations

Age/Sex Category	n ^a	Total (%)	Active (%) ^b	Healed (%) ^b	Both (%) ^b
Subadult	88	39.8	16.7	83.3	0.0
Adult [©]	184	50.5	1.5	89.4	9.1
Female	73	43.8	0.0	94.7	5.3
Male	95	57.9	2.3	86.4	11.4
Total [©]	275	47.3	4.8	88.1	7.1

Table 53. Porotic Hyperostosis Statistical Testing, Intra-Population

	Porotic Hyperostosi	s, Presence/Absence	Status of Lesions		
	χ²	p	χ²	p	
Subadult/adult	2.772	.096	.086*	.769	
Male/female	3.268	.071	.285*	.593	

Note: Conditions for 2×3 contingency table were not met, x^2 reflects the collapsing of "Active" and "Both" categories. Yeats Correction for Continuity used because of small "expected" cell values.

^a Equals number of individuals with observable cranial elements.
^b Status values represent the percentage of those in each group with evidence of porotic hyperostosis; cases

of thickened diploe have been removed C Discrepancies in sample numbers are the result of individuals that could not be aged and/or sexed.

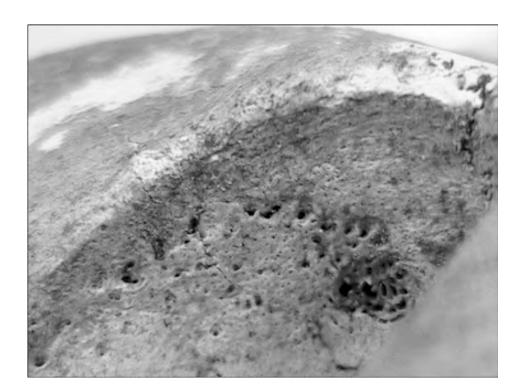


Figure 96. Cribra orbitalia of the left eye orbit (Burial 6, 25–30-year-old male).

Figure 97. Cribra orbitalia of the right orbit (Burial 39, 5–7 years old).

Table 54. Frequencies of Cribra Orbitalia in the NYABG Population

Age/Sex Category	n ^a	Total (%)	Active (%) ^b	Healed (%) ^b	Both (%) ^b
Subadult	63	28.6	21.4	78.6	0.0
Adult [©]	164	22.0	2.9	91.4	5.7
Female	66	18.2	0.0	91.7	8.3
Male	86	26.7	4.5	90.9	4.5
Total [©]	228	23.7	8.2	87.8	4.1

Table 55. Cribra Orbitalia Statistical Testing, Intra-Population

Age/Sex Category	Porotic Hyperostosi	is Presence/Absence	Status	of Lesions
Age/Sex Category	χ²	χ² ρ		р
Subadult/adult	1.100	.294	.575 ^{a, b}	.448
Male/female	1.545	.214		.432 ^{a, c}

 $^{^{\}mbox{\scriptsize a}}$ Conditions for 2×3 contingency table not met, x^2 reflects the collapsing of "Active" and "Both" categories.

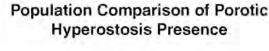


Figure 98. Population comparison of porotic hyperostosis presence.

^a Equals the number of individuals with observable eye orbits.
^b Status values represent the percentage of those in each group with evidence of cribra orbitalia; cases of thickened diploe have been removed.

[©] Discrepancies in sample numbers are the result of individuals that could not be aged and/or sexed.

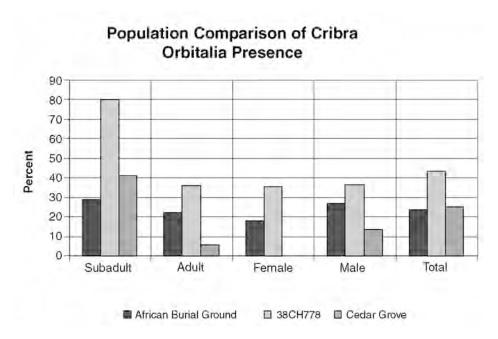
Yeats Correction for Continuity used because of small "expected" cell values.

[©] Fishers Exact Test.

Table 56. Porotic Hyperostosis Statistical Testing, Inter-Population

Age/Sex Category	All Pop	All Populations		Ground/FABC	African Burial Ground/ Cedar Grove		
Category	χ^2 p χ^2 p		χ²	р			
Subadult	24.689	<.001	22.605	<.001	.016	.900	
Adult	8.957	.011	.166	.6384	7.900	.005	
Female	4.270	.118	.567	.452	1.965 ⁸	.161	
Male	5.128	.077	.058	.809	3.902 [®]	.048	
Total	10.890	.004	8.828	.003	4.594	.032	

^a Yeats Correction for Continuity used because of small "expected" cell values.



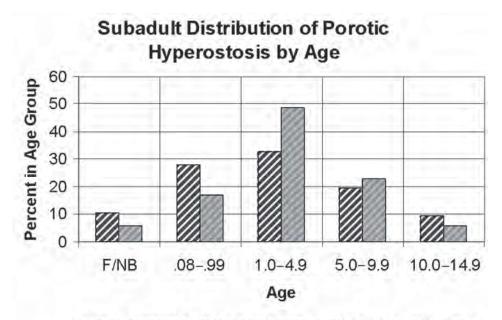

Figure 99. Population comparison of cribra orbitalia presence.

Table 57. Cribra Orbitalia Statistical Testing, Inter-Population

Age/Sex Category			i l Cedar Grove			African Burial Ground/38CH7	
Category	χ²	р	χ²	р	χ²	р	
Subadult			1.766	.184	3.495 [®]	.062	
Adult	8.688	.013	4.146 [®]	.042	1.649 ^a	.199	
Female	7.902	.019	3.032 [®]	.082	1.203	.273	
Male	1.894	.388	.618 [®]	.432	.098	.754	
Total	5.385	.068	.056	.813	4.351 [®]	.037	

Note: For subadult, all populations comparison, conditions were not met for 2 by 3 contingency table.

Yeats Correction for Continuity used because of small "expected" cell values.

☑ Total Assessed Subadult % ☐ Subadults w/ Porotic Hyperostosis %

Figure 100. Subadult distribution of porotic hyperostosis by age.

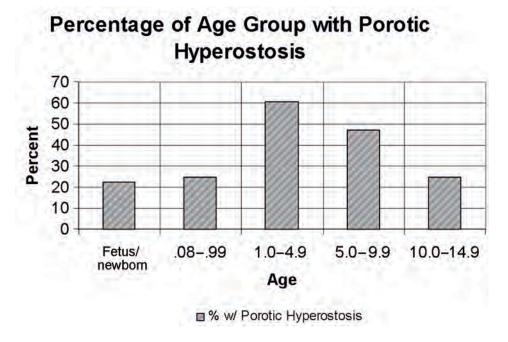


Figure 101. Percentage of age group with porotic hyperostosis.

active porotic hyperostosis (cribra orbitalia) occurred in the first year. Older subadult age groups displayed only healed lesions.

When the subadult distribution of porotic hyperostosis was compared with other populations, rates observed in the New York African Burial Ground samples were consistently higher than those from FABC (Figure 102). Rates of porotic hyperostosis were lower in the first 2 years at the New York African Burial Ground than those found at Cedar Grove. However, the New York African Burial Ground subadults displayed a higher rate than Cedar Grove subadults in the 6–15-year range. The apparent disparity seen in the 25-month–5-year age range may be attribut-

Comparison of Porotic Hyperostosis by Age Group: Subadults

Figure 102. Comparison of porotic hyperostosis by age group.

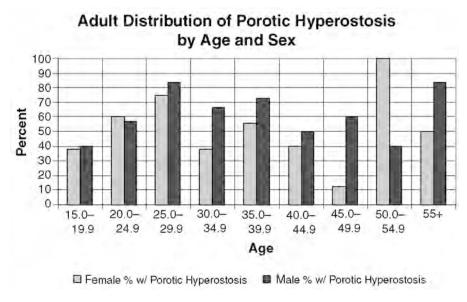


Figure 103. Adult distribution of porotic hyperostosis by age and sex.

able to the sample size in the FABC and Cedar Grove populations.

Among the New York African Burial Ground adults, porotic hyperostosis was more frequent in males overall, except in the 20.0–24.9 and 50.0–54.9 year age groups (Figure 103). Disparities between males and females were not as great in the younger adult age groups, from 15.0 to 29.9 years. Both male and

females experienced peaks in porotic hyperostosis frequencies in the 25.0–29.9 and 35.0–39.9 year age groups. In comparisons with other populations, no clear pattern emerged (Figures 104 and 105). Female rates for porotic hyperostosis in the New York African Burial Ground were higher in all adult age categories except in the 40–49.9-year age range, in which both FABC and Cedar Grove had higher rates. Male rates

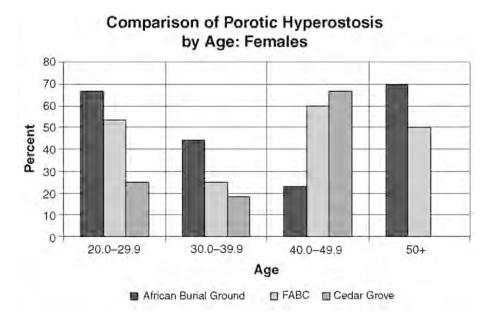


Figure 104. Comparison of porotic hyperostosis by age: females.

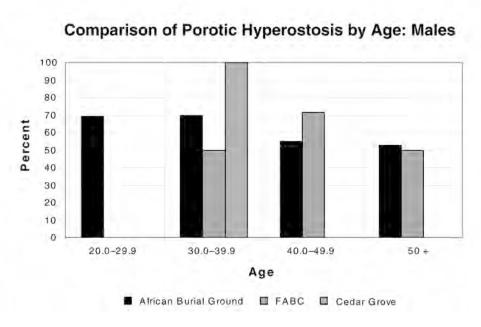


Figure 105. Comparison of porotic hyperostosis by age: males.

of porotic hyperostosis at the New York African Burial Ground were more consistent throughout the adult age ranges than those found in the Cedar Grove and FABC samples, although this difference is possibly a factor of sample sizes within these age groups in the latter two populations.

Another possible example of metabolic disruption due to nutritional inadequacy is long-bone bowing. Medial-lateral bowing of the lower limb was observed in a number of individuals, possibly indicative of metabolic disruption due to vitamin-D deficiency (rickets) (Tables 58 and 59). Only individuals who expressed

Age/Sex Category	n ^a	n ^b Total Clea Percent		Clearly Present n ^C	Clearly Present Percent
Subadult	77	5	6.5	2	2.6
Adult ^d	202	29	14.4	5	2.5
Female	77	13	16.9	1	1.3
Male	102	15	14.7	4	3.9
Total ^d	285	34	11.9	7	2.5

Table 58. Medial-Lateral Bowing of the Lower Long Bones

Discrepancies in sample numbers are the result of individuals that could not be aged and/or sexed.

Table 59. Med	lial/Lateral Bo	owing Statistic	cal Testing, I	ntra-Population	

Age/Sex Category		edial/Lateral Bowing Presence/Absence Clearly P		
	χ²	p	χ²	p
Subadult/adult	2.528 ⁸	.112	.137	.711
Male/female	.158	.691	.356®	.551

^a Yeats Correction for Continuity used because of small "expected" cell values.

bowing bilaterally were included in this analysis thus limiting the confounding effect of postmortem distortion. Approximately 11.9 percent of individuals with observable lower limb bones exhibited medial-lateral bowing. Adults (14.4 percent) had a higher rate than subadults (6.5 percent), although this difference was not statistically significant.

Among adults, females (16.9 percent) displayed a slightly higher frequency, though not statistically significant, of medial-lateral bowing than males (14.7 percent). When cases of medial-lateral bowing that were determined "clearly present" (as opposed to "barely discernable" or no severity determined) were considered, fairly consistent rates were observed throughout the sample. Although not statistically significant, males (3.9 percent) did exhibit a higher rate than females (1.3 percent). In comparison with FABC, which contained only one diagnosed case of rickets, the data may suggest a higher potential rate of this disorder at the New York African Burial Ground. The rate of rickets in the New York African Burial Ground sample, on the other hand, was not as great as that found among the Catoctin Furnace sample of enslaved industry workers from Maryland, where 50 percent of females and 75 percent of males exhibited tibial bowing (Kelly and Angel 1987:206). Although this disparity in rates may be in part because of differential scoring of tibial bowing, the greater prevalence at Catoctin Furnace seems to indicate that vitamin-D deficiency was more common in that sample than at the New York African Burial Ground.

The presence of scurvy (vitamin-C deficiency), another nutritional disorder that could potentially be present among the individuals of the New York African Burial Ground, was not investigated at this time. Research related to the skeletal expression of scurvy by Ortner et al. (1999) and others will provide a useful framework for future investigation of this nutritional disorder in the New York African Burial Ground.

Interaction of Infectious Disease and Nutritional Inadequacy

The interaction of infectious disease and nutrition is of particular concern, especially in enslaved people such

⁸ Equals the number of individuals with observable long bones of the lower extremities

Equals the number of individuals with bilateral medial/lateral bowing of the elements.

[©] Equals the number of individuals with "clearly present" bilateral medial/lateral bowing of the elements.

		Porotic Hy	perostosis	Porotic Hyperostosis with Periostitis					
Age/Sex Category	n ^a	n ^b	Percent	n [©]	Percent of Sample	Percent of those with Porotic Hyperostosis			
Subadult	88	35	39.8	18	20.5	51.4			
Adult ^d	184	93	50.5	75	40.8	80.6			
Female	73	32	43.8	27	37.0	84.4			
Male	95	55	57.9	46	48.4	83.6			
Total population d	275	130	47.3	94	34.2	72.3			

Table 60. Co-occurrence of Porotic Hyperostosis with Periostitis

Table 61. Co-occurrence of Porotic Hyperostosis with Periostitis Statistical Testing, Intra-Population

Age/Sex Category	Within Population	Presence/Absence	Within Porotic Hyperostosis Presence/Absence		
	χ²	р	χ²	р	
Subadult/adult	10.909	.001	9.505 ^a	.002	
Male/female	2.197	.138	.045	.832	

^a Yeats Correction for Continuity used because of small "expected" cell values.

as those interred at the African Burial Ground. Interestingly, historical research has found that the synergistic relationship between these two issues was also a concern in the past (Medford 2009). To investigate this synergism, frequencies of porotic hyperostosis and periostitis were considered together (Tables 60 and 61). As can be seen in Table 60, over one-third (34.2 percent) of the individuals from the New York African Burial Ground exhibited skeletal indicators of both porotic hyperostosis and periostitis.

Adults (40.8 percent) were almost twice as likely as subadults (20.5 percent) to have both pathologies. Of the adults, males (48.4 percent) had an 11 percent higher, though not statistically significant, proportion of individuals with periostitis and porotic hyperostosis than the females (37.0 percent). Upon examining the co-occurrence of individuals with porotic hyperostosis who also had periostitis, we found that almost three-quarters (72.3 percent) of those in the population with porotic hyperostosis also had infectious disease. Once again subadults (51.4 percent) exhibited lower rates

than adults (80.6 percent); however, males and females had very similar incidences of periostitis among those with porotic hyperostosis (see Table 61).

Upon comparing rates of individuals that had both porotic hyperostosis and periostitis, we found that the New York African Burial Ground sample exhibited higher overall percentages than the values for Cedar Grove (Rose and Santeford 1985) and FABC (Rankin-Hill 1997), although this difference was not statistically significant for several demographic categories (Figure 106 and Table 62). Subadults at the New York African Burial Ground present intermediate rates, lower than Cedar Grove, yet higher than FABC. Among adults, the New York African Burial Ground sample exceeds the co-occurrence incidence of porotic hyperostosis and periostitis in both the Cedar Grove and FABC samples. This pattern continues when sex-specific rates are considered, though the only statistical difference that exists in this case is between females in the New York African Burial Ground and FABC populations.

The number of individuals with a pathologically assessed cranium, removing the potential of including individuals in the sample that could not be investigated for porotic hyperostosis.

Equals the number of individuals with observable porotic hyperostosis.

Equals the number of individuals with observable porotic hyperostosis who also had observable periostitis.

Discrepancies in sample numbers are the result of individuals that could not be aged and/or sexed.

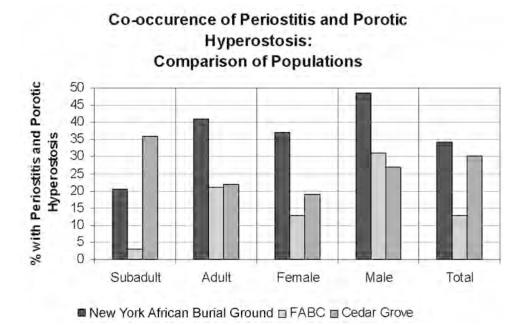


Figure 106. Co-occurrence of periostitis and porotic hyperostosis: comparison of populations.

Table 62. Co-occurrence of Porotic Hyperostosis with Periostitis Statistical Testing, Inter-Population

Age/Sex Category All Pop		TABC			African Burial Ground/ Cedar Grove		
		χ²	р	χ²	р	χ²	р
Subadult		18.489	<.001	7.543°	.006	3.882	.049
Adult		11.383	.003	8.824	.003	4.405	.036
Female		8.332	.012	7.274	.007	1.632®	.201
Male		4.996	.082	3.390	.066	1.673 ^a	.196
Total		19.869	<.001	19.823	<.001	.488	.485

^a Yeats Correction for Continuity used because of small "expected" cell values.

These results suggest that although Cedar Grove may indeed have experienced higher overall frequencies of periostitis than that found at the New York African Burial Ground, the interactive patterning for porotic hyperostosis and periostitis was similar at population level. However, this interaction appears to have affected age groups differently, greater among adults in the New York African Burial Ground and greater in subadults at Cedar Grove. The similarity in adult rates for porotic hyperostosis in the New York African Burial Ground and FABC populations is not replicated in the co-occurrence rates of porotic hyperostosis and infectious disease. This would suggest a

greater interaction of the two disorders in the New York African Burial Ground sample. Further investigation of co-occurrence rates of porotic hyperostosis and periostitis among these populations should be a productive venue for future research.

Conclusion

This chapter has focused on the indicators of infectious disease and nutritional inadequacy in the enslaved African population of colonial New York City as represented in the New York African Burial Ground.

The rates of generalized infectious processes observed in this investigation were high regardless of age or sex. Adult infectious disease was found to be more comparable to Southern plantation (Rathbun 1987) and post-Reconstruction rates (Rose and Santeford 1985), when compared to the similar urban environment of free "people of colour" in early-nineteenthcentury Philadelphia (Rankin-Hill 1997). Rates of porotic hyperostosis were less consistent: New York African Burial Ground subadults were found to be closer to the post-Reconstruction Cedar Grove subadults, but the adults were more similar to adults in Philadelphia's First African Baptist Church. However, the rate of cribra orbitalia was not as extreme as that found in the nineteenth-century 38CH778 Southern plantation population. The interplay of infection and porotic hyperostosis was evident in the high numbers of persons with indicators of both pathologies.

The presence of treponemal infection is well documented in this study. Although diagnosis of a specific treponemal form was not possible, the data suggest that at least some individuals were apparently infected prior to their arrival and that venereal syphilis was not a common treponemal infection in the particular case of colonial New York. This is significant because of the high prevalence of venereal syphilis associated with European colonialism throughout the Americas. Thus the plausibility of higher rates of the tropical disease, yaws, and lower rates of venereal syphilis, may substantiate other evidence of the continuous importation and high mortality of African captives in eighteenth-century New York. The duration of exposure to venereal syphilis among these individuals may not have been adequate for the manifestation

and expression of severe symptoms. Groups coming here from a region of endemic yaws may have been provided vaccinelike immunity to other treponemal strains. Furthermore, the rates of infection were not nearly so high nor as severe as those of widespread infection of venereal syphilis found in Suriname (Khudabux 1991).

As discussed in Chapter 13, the only infectious disease whose rates were documented for New York Africans is smallpox, in connection with one of the several epidemics that ravaged New York, Boston, and Philadelphia in the eighteenth century. The "vindicationist" work of Cobb (1981) has called attention to the Akan, West African use of smallpox inoculation and their introduction of this medical practice to the English colonies, including nearby Boston. Smallpox infection may have contributed to the periostitis observed in skeletal remains, but specific skeletal indicators of this disease were not studied here. A slightly lower mortality for Africans than for Europeans was recorded for the epidemic. That result would seem counterintuitive, assuming that the enslaved population had lived under worse conditions for the spread of epidemic diseases than did free persons. Inoculation should be considered as a factor in the relationship between disease prevalence and death rates (see Chapter 13).

The information presented here suggests that infectious disease, in conjunction with inadequate nutrition, was another source of chronic stress for the enslaved population of the New York African Burial Ground. New York African Burial Ground studies of disrupted growth and development and of early mortality are consistent with these findings.

CHAPTER 11

Skeletal Indicators of Work: Musculoskeletal, Arthritic, and Traumatic Effects

C. Wilczak, R. Watkins, C. C. Null, and M. L. Blakey

The types of bony changes studied in association with mechanical stress include osteoarthritis, pressure facets, cortical thickness, fracture, and hypertrophy of tendinous and ligamentous attachment sites. Although age is one component in the development of many of these markers, we believe that they mainly reflect the cumulative effects of mechanical stress rather than senile degeneration alone. This influence is supported by extensive experimental evidence of bone remodeling with increased osteogenesis and decreased bone resorption in response to mechanical loading (see reviews in Boyde 2003; Knüsel 2000; Wilczak and Kennedy 1998). The empirical evidence of Wolff's 1892 theory of bone transformation provides the research rationale for studies of activity-induced bone hypertrophy (Derevenski 2000; Hawkey and Merbs 1995; Weiss 2003; Wilczak 1998). In the case of osteoarthritis, which involves both cartilage and bone, current studies of repetitive loading on isolated cartilage tissue and individual chondrocytes indicate that biomechanical factors do contribute to the onset of degenerate joint disease, although the precise nature of the relationship has yet to be defined (Shieh and Athanasiou 2002).

It is also important to note that some researchers have argued against normal levels of habitual activity as a factor in the distribution of these markers, particularly in the case of osteoarthritis, but do consider traumatic injury or extreme forms of labor plausible candidates for early and severe forms of development (Jurmain 1999; Knüsel 2000). Trauma or acute stress is a generally accepted causative factor in the development of osteoarthritis, and clinical studies in sports medicine show that enthesial disorders can also be initiated by injury (Benjamin et al. 2002; Ortner 2003). There are two significant etiological

possibilities in terms of assessing the labor intensity of a population: direct responses to loading that was experienced during normal levels of activity or initiation due to traumatic injury.

Skeletal indicators of work stress are of particular interest for the New York African Burial Ground Project because physical labor was the principal purpose for which Africans were enslaved. We expect a diverse expression of markers among individuals from this sample owing to anticipated differences in cultural practices and genetic susceptibility, as well as variability in labor patterns. Slave labor in the city would have included work in fisheries, industry, transportation, shipping, small shops, construction, and domestic work. A study of an urban enslaved population from New Orleans (1720–1810) found that skeletal indicators of labor stress were more variable than in rural enslaved groups, reflecting this wide range of activities (Owsley et al. 1987). Although many of the urban enslaved had pronounced skeletal changes associated with manual labor, others, possibly free blacks or domestic enslaved, exhibited very few signs of physical stress. Similar patterns should be observed in the New York African Burial Ground population.

Sample Analyzed

Incidence rates for mechanical stress markers were calculated using only individuals of 15 years of age or greater. Enslaved children were often put to work at an early age, but there are several reasons to limit the analyses of markers of biomechanical stress to late adolescents and adults: (1) continuous bone remodeling associated with growth may confound the analysis; (2) stress markers can require repeated

Age in Years Categories	Males	Females	Unknown Sex
15–24	15	12	8
25–34	17	18	3
35–49	40	20	_
50+	16	13	_
Adult	10	15	_
Totals	98	78	11

Table 63. Demography of the Sample Used in Stress Marker Analysis

stress over a period of time to develop; and (3) most studies of occupational markers have been limited to adults and little is known about their development in subadults.

The excavated New York African Burial Ground remains included 419 burials: 187 individuals were suitable for this analysis. Two hundred and twentynine individuals were excluded because they were either less than 15 years of age, too incomplete for analysis, or fungal contamination prevented analysis. Three males with bilateral sacroiliac fusion were also excluded based on a possible differential diagnosis of a spondyloarthropathy or DISH, which can confound stress marker analyses (Arriaza 1993; Ortner 2003). Two of the excluded males were in the age range of 35-49 years and the third was a male in the 50+ age category. The demographic distributions of the individuals used in this portion of the study are presented in Table 63. Sample size for analysis of specific markers varies from these maximum numbers because of differential preservation of various skeletal elements.

Degenerative Changes of the Joints Scoring

Osteoarthritis of the synovial joints was scored as changes including porosity of the articular surface, lipping at the joint margins, and eburnation or grooving of opposing surfaces. Spinal osteophytosis (spondylosis deformans) of vertebral body synchondral joints was scored based on marginal spicule (osteophyte) development. Initial analysis included a determination of severity for each type of degenerative change

scored on a scale as either absent = 0, mild = 1, or moderate to severe = 2.

For osteoarthritis, a composite score for each joint or joint complex was created, which included both the individual severity scores and the type of degenerative changes. Porosity and osteophyte scores were classified as mild when one or both scores equaled 1, moderate when one score equaled a 2, or severe if both scores equaled 2. Eburnation is usually considered an end stage of cartilage breakdown and joint destruction, so its presence was always scored as severe. If more than one articular surface was present for a joint, the higher composite score was used. In some cases, such as the hands and feet, functional areas included multiple synovial joints that made up a joint complex. Osteoarthritis was assessed as present for such a region when any one of the joints showed degenerative changes. Because more than 90 percent of the sample showed identical composite osteoarthritis scores on the right and left side, no analysis of asymmetry is presented.

Results of the Vertebral Analysis

Figures 107 and 108 illustrate severe vertebral osteoarthritis and osteophytosis development. Sample sizes and the frequency of these degenerative changes from osteoarthritis by sex of the vertebral synovial joints and osteophytosis of the vertebral bodies are listed in Tables 64 and 65. Because there is a known age component in the development of osteoarthritis and osteophytosis, frequencies are given with the total sample age range from 15 to 50+ and excluding the oldest and youngest for a sample age range of 25–49 years. Thirty-four males and 29 females had evidence of osteoarthritis in at least one vertebral

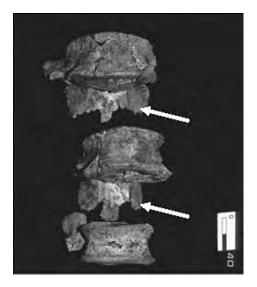


Figure 107. Severe osteoarthritis of the vertebral articular processes in a female aged 50–60 years (Burial 40).

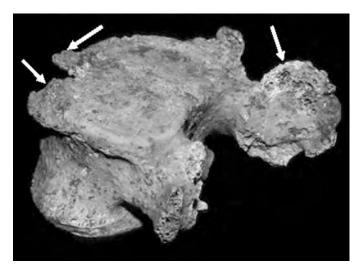


Figure 108. Severe osteophytosis (*left arrows*) and osteoarthritis (*right arrow*) of a lumbar vertebra in a male aged 35–45 years (Burial 63).

Table 64. Distribution of Moderate to Severe Vertebral Osteoarthritis by Sex

Age In Years	Males	i	Fema	les
Age III Tears	No. Affected	%	No. Affected	%
			Cervical	
25–49	11 (39)	28.2	7 (23)	30.4
15–50+	18 (59)	18 (59) 30.5		21.3
			Thoracic	
25–49	12 (30)	40.0	9 (23)	39.1
15–50+	19 (52)	36.5	13 (41)	31.7
			Lumbar	
25–49	17 (40)	42.5	14 (24)	58.3
15–50+	26 (63)	41.3	26 (45)	57.8

Note: Numbers in parentheses are sample sizes (n).

region. There was little evidence for sex differences in the distribution of vertebral osteoarthritis. Lumbar vertebrae showed the greatest difference, with 58.3 percent of females and 42.5 percent of males affected for the age range of 25–49 years, but this difference was not statistically significant (chi-square test, p = .22). Vertebral osteophytosis was present in 23 males and 21 females in at least one vertebral region. Cervical osteophytosis rates were similar to osteoarthritis rates in individuals 25–49, but thoracic and lumbar osteophytosis occurred about half as fre-

quently as osteoarthritis. There is no evidence for significant differences between the sexes in the rates of osteophytosis for individuals aged 25–49.

Comparisons among age categories and regions are most clearly seen in Figures 109 and 110. Males, females, and individuals of unknown sex are combined into one sample for this analysis because neither osteophytosis nor osteoarthritis rates show significant sex differences, and sample sizes were as low as eight individuals when the sexes were considered separately by age. Total sample sizes for the indi-

Age In Years	Male	s	Females					
Age III Tears	No. Affected	% No. Affected		%				
		C	ervical					
25–49	12 (39)	30.8	6 (24)	25.0				
15-50+	20 (60)	33.3	15 (47)	31.9				
	Thoracic							
25–49	6 (32)	18.8	3 (22)	13.6				
15-50+	13 (52)	25.0	8 (40)	20.0				
	Lumbar							
25–49	7 (43)	16.3	3 (23)	13.0				
15-50+	12 (68)	17.6	11 (43)	25.6				

Note: Numbers in parentheses are sample sizes (n).

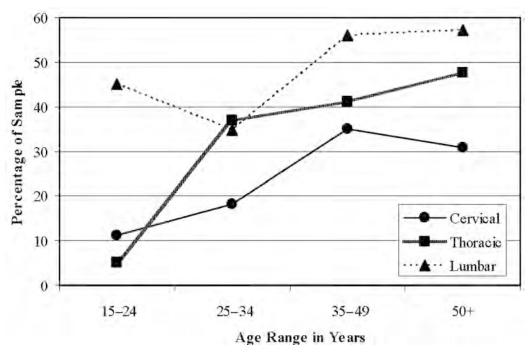


Figure 109. Age and incidence moderate to severe vertebral osteoarthritis.

vidual vertebral regions by age categories ranged from 18 to 44 individuals. The general trend for both osteophytosis and osteoarthritis is toward increased frequencies of affected individuals with age. Nonetheless, a fairly large proportion of the youngest age group had moderate to severe degenerative changes. The most striking example is seen in osteoarthritis of the lumbar vertebrae—45.0 percent of individuals

aged 15–24 were affected. Also in this age category, the frequency of moderate to severe cervical osteoarthritis was 11.0 percent and cervical osteophytosis was 10.5 percent.

In this sample, cervical osteophytosis was more frequent than in the thoracic and lumbar regions in all age categories (Figure 111). When the 32 cervical osteophytosis cases with preserved thoracic or

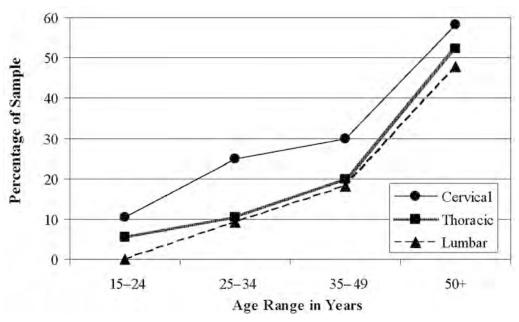


Figure 110. Age and incidence of moderate to severe osteophytosis.

Figure 111. Severe osteophytosis of the cervical vertebrae in a male aged 35–45 years (Burial 63).

lumbar vertebrae were examined individually, 20 (9 females and 11 males), or 62.5 percent, did not have these severe changes in one or both of the other two vertebral regions. For these 20 cases, cervical osteoarthritis was absent in 4 (20 percent), mild in 4 (20 percent), and moderate to severe in 12 (60 percent). The corresponding ages of these 20 individuals with cervical osteophytosis were: 2 aged 15–24, 4 aged 25–34, 8 aged, 35–50, and 6 aged 50+. By the sixth decade, 58.4 percent of the individuals (14 of 24) showed clear evidence of cervical osteophytosis. Osteoarthritis showed the reverse regional distribution with the lumbar vertebrae most affected and the cervical vertebrae least affected.

The general correlation of osteophytosis and osteoarthritis with age is expected because both develop as part of the natural aging process. However, they are multifactorial conditions that can be affected by genetics, metabolism, and nutrition (Wilczak and Kennedy 1998). Mechanical stress can also accelerate the age at onset as well as the severity of degenerative changes. The presence of moderate to severe osteophytosis and osteoarthritis in the youngest age group suggests causative factors in addition to normal agedegenerative changes. The high frequency of cervical osteophytosis, compared to that in the lower back, is also compelling evidence for the impact of strenuous labor on the vertebral column. Environmental factors such as nutrition are systemic, and although they may increase susceptibility to cartilage and joint breakdown, they would not be expected to affect the pattern of degeneration within the vertebral column. In relation to both age and mechanical effects, osteophytosis generally affects the lumbar region first with the cervical about half as affected and the thoracic least (Bridges 1992; Jurmain 1999). The reversal of the normal pattern provides evidence for labor that resulted in mechanical strain to the neck. Further evidence is present in seven individuals with unambiguous pre- or perimortem fractures to the cervical vertebrae (Table 66). All but one also had modifications consistent with osteophytosis, osteoarthritis, or both in the cervical region.

The similar rates of cervical osteophytosis do not necessarily mean that men and women were performing the same types of labor but only that both were subjected to repeated and severe stress of the neck. Diverse activities have been suggested as contributing factors to the development of cervical osteophytosis, including compression of the neck during milking, extension of the neck during fruit picking, and use of a tumpline for carrying loads on the back (Bridges 1994; Olin 1982; Wienkler and Wood 1988). Correlations between carrying loads on the head and cervical osteophytosis have also been suggested for Bronze Age Harappans (India) and prehistoric Native Americans from Alabama, as well as for contemporary grain porters from Zambia and South Africa (Bridges 1994; Levy 1968; Lovell 1994; Scher 1978). Loading of the shoulders as well as the head can place stress on the neck, particularly when the lower cervical and thoracic vertebrae are involved. In the New York African Burial Ground sample, four individuals have moderate to severe cervical and thoracic osteophytosis without involvement of the lumbar vertebrae: one female 25-34 years, one male 15-24 years, and two males of 50+ years old.

Sixty percent of individuals with cervical osteophytosis also had at least moderate cervical osteoarthritis. Theoretically, stress on the disks and vertebral bodies is primarily caused by compression, whereas the apophyseal joints are stressed with rotation and bending. Many activities will result in both compression and bending stresses; for example, when carrying objects on the head the weight of the load may shift during walking causing lateral stresses in the head and neck. However, a substantial portion of individuals had osteophytosis without osteoarthritis, reflecting perhaps the diversity of the individual activities within the population, differences in anatomy, genetic predispositions, nutritional stresses, or disease. Certainly, the distribution of stress across the vertebral segments will vary among individuals and may influence the onset and progression of degenerative joint disease.

Unlike osteophytosis, the distribution of osteoarthritis in previous studies does not present as clear a pattern of regional distribution among the three vertebral segments. There is some bias toward lumbar involvement, but it is not uncommon for peak values to appear in either the thoracic or lumbar segments (Bridges 1994; Derevenski 2000). Biomechanically, this is not surprising because the apophyseal facets have less of a weight-bearing role than the vertebral bodies and disks. High levels of osteoarthritis in this sample suggest participation in labor involving bending and rotation of the spine or indirect stress to the back through limb muscles that directly attach to vertebrae. This is particularly true for the lumbar region where the early age for onset of severe osteoarthritis is striking. Stress in the lower back occurs during many general types of arduous physical labor including carrying, bending and lifting, as well as dragging heavy objects.

Schmorl's Nodes

Schmorl's nodes are shallow, depressed pits occurring on the superior and/or inferior end plates of the vertebral bodies; these pits result from the pressure of cartilaginous protrusions of damaged intervertebral discs (Figure 112).

The general pattern of spinal distribution for 22 affected males and 11 affected females (Table 67) was similar with the greatest frequency in the lumbar region and the lowest in the cervical region for both sexes. Lumbar frequencies were equal, but male frequencies were more than double those of females in the thoracic vertebrae and triple those of females in the cervical vertebrae. Two females and six males had Schmorl's nodes in multiple vertebral regions.

Age-related degenerative change is often considered the primary reason for Schmorl's node development (Aufderheide and Rodriguez-Martin 1998), but mechanical stress may be a contributing factor as appears to be the case in this population. The relative rarity of this condition in younger persons suggests that it only occurs earlier in life under conditions of extreme physical stress (Capasso et al. 1999). In the combined male and female sample, Schmorl's nodes were most frequent in the age range of 25–34 for all

Table 66. Number of Fractures by Skeletal Element in Adults by Sex

		M	Males			Fem	Females	
Skeletal Element	Premortem [®]	Perimortem	Ambiguous Perimortem	q%	Premortem	Perimortem	Ambiguous Perimortem	3%
Cranium	1	6	19	23.5	_	5	4	11.1
Mandible			1	6.0		1	1	2.5
Cervical vertebrae ^b	1	2		2.6	2	2	1	6.2
Thoracic vertebrae ^b	2	2		3.4		1	1	2.5
Lumbar vertebrae ^b		1	1	1.7		3	2	6.2
Rib	3	4	4	9.4	1	2	2	6.2
Clavicle	1	1	1	2.6		2		2.5
Scapula		4	1	4.3		2	2	8.6
Humerus		1	2	2.6		4	1	6.2
Radius	3	2	3	8.9		5		6.2
Ulna	3	1	4	8.9		9		7.4
Pelvis		8	2	8.6		5	1	7.4
Femur		7	9	8.6	1	8	1	12.4
Tibia	1	2	2	4.3		7		4.9
Fibula	4		3	0.9		3		3.7
Metacarpal			1	0.9	2			2.5
Hand phalanx			2	1.7				0
Metatarsal	1			0.9	1			1.2
Foot phalanx	5			4.3	2			2.5
Total	24	41	52		6	56	16	

^a Vertebral fractures do not include spondylolysis (see Table 11.6). ^b Percentage of the 117 fractures recorded for males. ^c Percentage of the 81 fractures recorded for females.



Figure 112. Schmorl's node depression of a lumbar vertebra in a male aged 35–45 years (Burial 70).

Table 67. Regional Distribution of Schmorl's Nodes

Region	Ma	les	Fem	ales
Region	Number	Percent	Number	Percent
Cervical	6 (60)	10.0	1 (47)	2.1
Thoracic	10 (51)	19.6	4 (40)	10.0
Lumbar	14 (67)	20.9	9 (43)	20.9

Note: Numbers in parentheses are sample sizes (n).

three vertebral regions (Table 68). The frequencies are over two times those found in the oldest sample of 50 years or greater. As with vertebral osteoarthritis and osteophytosis, the presence of Schmorl's nodes in younger individuals suggests factors other than agerelated disc degeneration. Although one might expect to see an increase in the incidence with age when mechanical stresses are a factor, the higher frequency in younger individuals may simply reflect sampling bias in the labor history or genetic susceptibility (in conjunction with stress) of the individuals within each age group. Percentages of individuals with Schmorl's nodes in the cervical, thoracic, and lumbar regions, who were also affected with osteophytes in the same vertebral region, were 28.6 percent, 42.9 percent, and 21.7 percent, respectively.

Spondylolysis

Unilateral or bilateral fracture of a vertebral neural arch and subsequent separation from the vertebral body constitute the defect of spondylolysis (Figure 113). Although technically considered a type of fracture, it is discussed here because it can be caused by fatigue fracturing when presenting as typical spondylolysis. Typical spondylolysis is a fracture in the lumbosacral region through pars interarticularis with the fourth and fifth lumbar vertebrae most frequently affected (Merbs 1996). The etiology of typical spondylolysis suggests both genetic factors, likely related to differences in vertebral morphology, and mechanical stresses affecting the lower back, such as general heavy labor, and

Age in Years	Cervical	Thoracic	Lumbar
15–24	0.0(0)	16.7 (2)	15.0 (3)
25–34	12.5 (3)	31.6 (6)	36.4 (8)
35–49	7.5 (3)	8.6 (3)	22.7 (10)
50+	4.2 (1)	14.3 (3)	13.0 (3)

Table 68. Percentage of Individuals with Schmorl's Nodes by Age

Note: Numbers in parentheses are number of individuals with Schmorl's nodes (n).

Figure 113. Vertebral spondylolysis in a female aged 35–40 years (Burial 107).

in athletics that stress the lower back such as football, gymnastics, and rowing (Merbs 1989a, 1996).

Complete, bilateral spondylolysis of the fourth or fifth lumbar vertebrae was present in four adults from the New York African Burial Ground (Table 69). All of the individuals with spondylolysis also had at least one other pathological change of the vertebrae, both within and outside of the lumbar region, including Schmorl's nodes and osteophytosis in three of the four burials. All four individuals showed evidence of osteoarthritis of the lumbar apophyseal joints. Osteoarthritis was also present in the cervical vertebrae of Burial 11, in the thoracic vertebrae of Burial 37, and in both the cervical and the thoracic vertebrae of Burials 97 and 107.

Examination of musculoskeletal stress markers (MSMs) and axial osteoarthritis revealed further evidence that the individuals affected by spondylolysis experienced heavy stress. Details of osteoarthritis and

MSM scoring procedures are given in the respective sections of this chapter. Burial 11 is a male aged 30–40 who showed hypertrophy or stress lesions at 37 percent of 33 muscle or ligament attachments. These attachments included several associated with carrying or heavy lifting, such as the triceps, biceps, deltoid, quadriceps, linea aspera, obturator exturnus/internus, and gluteus minimus/medius muscle attachments. Moderate osteoarthritis of the hip and elbow were also present in the form of peripheral lipping of all articular surfaces. In the elbow, lipping was particularly prominent on the ulna, suggesting bending stress as a greater factor than rotational stress.

Burial 97 is a male aged 40-50 years with extensive MSMs that were scored as moderate to severe for 17 of 30 (56 percent), of the attachments examined, which is over twice the average percentage (25.2 percent) of MSMs for all adult males. Moderate to severe osteoarthritic lipping was also present at the hip, elbow, wrist, and hand. The knee, ankle, and foot were not sufficiently preserved for scoring. The only female (Burial 107) with typical spondylolysis was aged 35-40 years. Thirty-nine percent of the attachments examined were scored as MSMs as compared to the average of 17.6 percent for all females. Some of the same patterns as seen in Burial 11 emerged, with stress lesions at the brachialis, deltoid, linea aspera, quadriceps, and obturator internus/externus muscle attachments. Although mild lipping was present at most joints or joint complexes, only the knee was scored with moderate to severe lipping.

Burial 37 is a male aged 50+ years. In addition to the extensive changes in the vertebral column as detailed in Table 69, 21 percent of the attachments showed significant hypertrophy or stress lesions, including those of the brachialis, supinator, quadriceps and linea aspera. All of the joints examined in

	Typical Spond	lylolysis	Othe	r Degenerative Cha	nges ^a
Burial	Sex	Age Range (yrs)	Osteophytosis	Osteoarthritis	Schmorl's Nodes
11	M	30–40	C,T,L	C,L	
97	M	40–50		C,T,L	C,T
107	F	35–40	C,T,L	C,T,L	T
37	M	45–55	C,T,L	T,L	T,L

Table 69. Spondylolysis and Associated Vertebral Degenerative Changes

this older individual showed at least mild osteophytic lipping, but more pronounced lipping was present in the hip, ankle, knee, and foot. Although all four burials showed some correspondence between spondylolysis and other stress markers, there were also differences among the individuals. High levels of mechanical stress were indicated by MSMs for Burial 11, by osteoarthritis in Burial 37, and by both MSMs and osteoarthritis in Burials 11 and 97.

Variability in the types of vertebral changes, as well as in the degree and patterning of the associated MSMs and axial osteoarthritis, suggests a corresponding variability in the types of labor performed by this urban population. However, individual differences in genetics, nutritional levels, bone density, anatomy, and posture in the performance of similar tasks are also contributing factors to diverse manifestations of stress in the spine. Susceptibility to spondylolysis in particular has been correlated with anatomical variation in the lower back and preferred posture during the performance of strenuous tasks (Capasso et al. 1999). Merbs (1983) and Stewart (1953) both suggested holding the legs extended when sitting (as in a kayak), or when standing and working with materials on the ground, contributed to the high incidence of spondylolysis among Alaskan natives. Even what appear to be very similar sorts of activities may show different skeletal manifestations upon closer examination. Grain porters in Zambia had fractures, herniations, and other injuries most commonly in the first through fourth cervical vertebrae, but grain porters in Cape Province, South Africa, only showed injuries below the fourth cervical vertebra (Capasso et al. 1999). So although there is evidence of general levels of high mechanical stress for the four burials examined here, one must be careful not to overinterpret the specific manifestations for any one individual.

Results of Appendicular Joint Analysis

In the upper limbs, 22 females and 43 males had osteoarthritis in at least one of the joints or joint complexes, which included the shoulder, wrist, elbow, and hand. For individuals with osteoarthritis and all four joint regions scorable, the average number of joints affected was 2.26 for females and 2.09 for males. If the joint and joint complexes are ranked by relative frequency of osteoarthritis, there are differences between the sexes (Table 70). For the 25–49-year age range, females had the highest incidences in the wrist, and males were highest in the elbow (Figures 114 and 115). The shoulder was least affected in both sexes. The greatest frequency difference between males (32.6 percent) and females (19.4 percent) was in the elbow.

In the lower limbs, 40 females and 58 males had osteoarthritis in at least one joint or joint complex, which included the hip, knee, ankle, and foot. For individuals with osteoarthritis and all four regions scorable, the average number of joints affected was 2.39 per individual for females and 2.17 per individual for males. When the eight joint or joint complexes of the upper and lower limb are considered together, the average number affected in those with osteoarthritis was 4.11 for females (n = 26) and 3.59 for males (n = 44). There were six individuals with all eight regions affected. Four of these were males of 50+, and two were females aged 25–34 years.

There was a higher frequency of osteoarthritis in the lower limbs than in the upper limbs for both sexes (Table 71). Only the male elbow, and perhaps wrist, had comparable incidence levels. Both males and females had the highest lower-limb incidence of osteoarthritis in the ankle (Figures 116 and 117). In

 $^{^{\}mbox{a}}$ C = cervical, T = thoracic, L = lumbar

Table 70. Distribution of Moderate to Severe Osteoarthritis in the Upper Limb

Ago In Vones	Male	?S	Fer	males
Age In Years	No. Affected	%	No. Affected	%
		S	houlder	
25–49	6 (46)	13.0	4 (31)	12.9
15–50+	15 (76)	19.7	12 (55)	21.8
			Elbow	
25–49	16 (49)	32.7	6 (31)	19.4
25–50+	29 (82)	35.4	14 (58)	24.1
			Wrist	
25–49	10 (38)	26.3	5 (21)	23.8
15–50+	18 (66)	27.3	10 (40)	25.0
			Hand	
25–49	8 (48)	16.7	5 (29)	17.2
50+	19 (80)	23.8	12 (55)	21.8

Note: Numbers in parentheses are sample sizes (n).

Figure 114. Osteoarthritis with marginal lipping in the wrist of a female aged 50–60 years (Burial 40).

females and males, this was followed by the hip and the knee. The ankle joint showed the greatest sex difference with 51.7 percent of females and 42.2 percent of males affected for the age range of 25–49 years, but this difference was not statistically significant.

It was difficult to examine age effects independently for males and females because sample sizes were as low as 10 individuals when the sexes were considered separately by age. Because the joints or

joint complexes did not show statistically significant sex differences, all were plotted as combined samples of males, females, and unknown sex initially (Figures 118 and 119). The elbow was also plotted separately for males and females because the greatest sex differences were found at this joint (Figure 120). Total sample sizes for the combined appendicular joints by age categories ranged from 17 to 54 individuals. The general trend for both upper limb and

Figure 115. Mild to moderate osteoarthritis in the humeral articular surface of the elbow in a male aged 30–40 years (Burial 11): (*a*) anterior view; (*b*) posterior view.

Table 71. Distribution of Moderate to Severe Osteoarthritis in the Lower Limb

Ago in Vones	Male	2S	Fema	les		
Age in Years	No. Affected	%	No. Affected	%		
			Hip			
25–49	19 (51)	37.3	13 (31)	41.9		
15-50+	33 (82)	40.2	22 (57)	38.6		
]	Knee			
25–49	14 (49)	28.6	13 (33)	39.4		
25-50+	27 (82)	32.9	24 (62)	38.7		
	Ankle					
25–49	19 (45)	42.2	15 (29)	51.7		
15-50+	39 (75)	52.0	27 (56)	48.2		
			Foot			
25–49	15 (45)	33.3	11 (31)	35.5		
50+	28 (76)	36.8	20 (56)	35.7		

Note: Numbers in parentheses are sample sizes (n).

lower limb joints was toward increased frequencies of affected individuals with age. Nonetheless, a fairly large proportion of the youngest age group had moderate to severe degenerative changes. This was most apparent in the lower limbs where incidences ranged from 15 percent in the foot to 25 percent in the ankle for 15–24-year-olds. In the upper limbs, the elbow

of the youngest age group had the highest incidence of 21.7 percent. The lower limbs were clearly more affected than the upper limbs, and it is unlikely that incidences in the lower limb are simply a phenomenon of normal weight-bearing and age because moderate to severe osteoarthritis reached quite high levels in the young adults and was pronounced in those aged

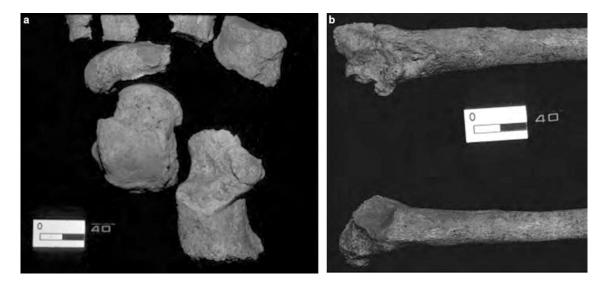


Figure 116. Osteoarthritis of the ankle in a female aged 50–60 years (Burial 40): (*a*) superior aspect of the distal ankle articulations; (*b*) the proximal ankle articulation on the fibula.

Figure 117. Osteoarthritis in the ankle and foot of a male aged 40–50 years (Burial 238).

25–49 years as well. Figure 119 also shows the trend for higher incidences in the ankle, with the greatest differences when compared to the hip, knee, and foot in the 25–34-year age group. In the oldest individuals (50+), the incidence for all lower limb joints and joint complexes increase to rates greater than 58 percent.

Sample sizes for osteoarthritis of the elbow ranged from 9 individuals for females aged 15–24 and 50+ to 36 individuals for males aged 35–49 years. The trend for males to exceed females was interrupted in the age range of 25–34. In this group of 13 males, none showed significant osteoarthritis. The largest

difference was in the 35–49-year-age range where the male incidence was 44.4 percent (n = 36) and the female was 18.8 percent (n = 16).

The incidence of osteoarthritis was higher in the lower limbs, suggesting greater stress than in the upper limbs. Activities that might be applicable in this population include walking over uneven surfaces, performing activities while squatting, and climbing stairs and ladders. It is not possible to say for certain which of these activities would have been most important for this population, and it is likely that different stresses were factors for different individuals. An alternative

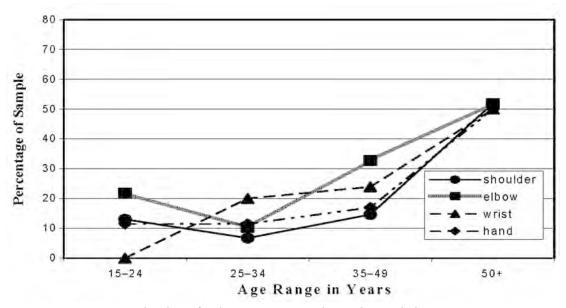


Figure 118. Age and incidence of moderate to severe osteoarthritis in the upper limb.

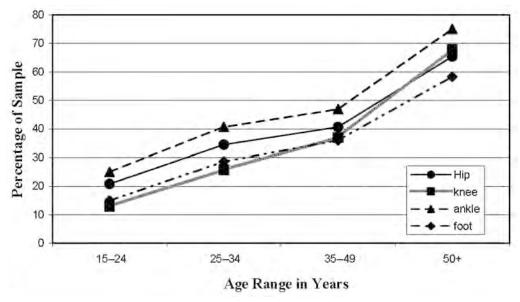


Figure 119. Age and incidence of moderate to severe osteoarthritis in the lower limb.

explanation is that high general stress experienced in this population contributed to osteoarthritis development in all limbs, but rates in the lower limbs were highest because of the additional weight-bearing burden. Perhaps this is true, but the pattern in the vertebral column suggestive of the higher burden in the pelvic girdle. The higher incidence of osteoarthritis in the lower limbs is compatible with the high levels of osteoarthritis of the lumbar vertebrae, supporting a

difference in the activity loads of the upper and lower limbs. It is of interest that the highest incidence of osteoarthritis was found in the ankle because it is rare in the archaeological record as well as today (Rogers 2000). When it does occur, it is normally caused by traumatic injury or other pathology. Certainly, abrupt trauma cannot be ruled out here.

For the elbow, there is no way to know if males aged 35–49 years with high osteoarthritis rates or

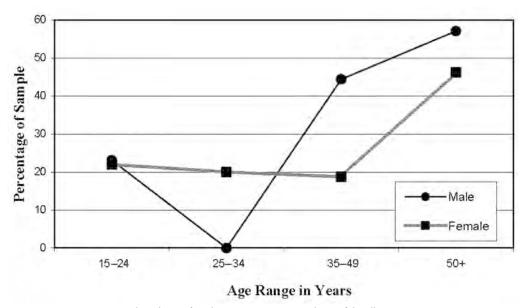


Figure 120. Age and incidence of moderate to severe osteoarthritis of the elbow.

males aged 25–34 with lower rates are more representative of the population. Therefore, it would be an overinterpretation to conclude that all males experienced more stress than females at the elbow. This example clearly illustrates the difficulties in making specific statements rather than discussing broad trends in this population where individuals performed a wide variety of tasks. All that can be concluded is that at least some individual males were likely to have experienced high stress levels at the elbow. This stress level could have been caused by habitual labor in this age group or traumatic injury, leading to the degenerative changes.

Musculoskeletal Stress Markers

Musculoskeletal stress markers (MSM) are distinct marks at the site of ligament and tendon attachments to the periosteum and bone. The types of bony changes include hypertrophic bone development that causes the formation and enlargement of distinct ridges and crests at the attachment, resulting in a rugose appearance. With extreme stress at the attachment, nonlytic furrows or pits may develop, resulting in a stress lesion called an enthesopathy at a tendinous attachment or a syndesmoses at a ligament attachment. Both of these terms have been used to describe either hypertrophy and stress lesions, or stress lesions exclusively. To avoid confusion, we will follow the

terminology of Hawkey and Merbs (1995), referring to the more extreme furrow or pit development as stress lesions for both enthesial and syndesmosial sites.

Scoring of MSMs

Three attachments were scored in the head and neck, 19 in the upper limb, and 11 in the lower limb. If hypertrophy or stress lesions were manifest at both the origin and insertion of a specific muscle or ligament the highest score was used. For most of the attachments, the greatest percentage of MSM expression was at the insertion where tensile stresses are most intense. For example, there were 7 MSMs scored for the humeral origin of the brachialis muscle and 81 at its insertion on the ulna. Multiple muscles were scored together when they shared a common attachment or when the attachments were located too closely for clear discrimination. Therefore, when referring to an attachment site in the singular, it may include several sites, such as origin and attachment and/or multiple muscles. MSMs were scored as mild hypertrophy = 1, moderate/severe hypertrophy = 2, mild stress lesion = 3, or moderate/severe stress lesion = 4 (Figures 121 and 122). In analyses of MSM frequency, only scores of 2 or greater were considered. Exclusion of mild hypertrophy ensured that only clear cases of MSMs were scored.

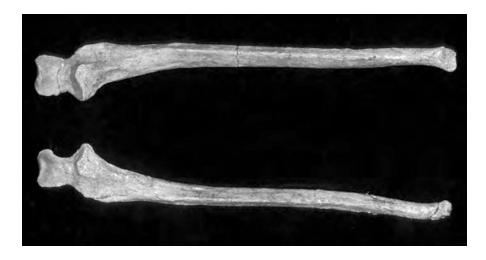


Figure 121. Severe hypertrophy of the ulnar supinator insertions in a male aged 40–50 years (Burial 369).

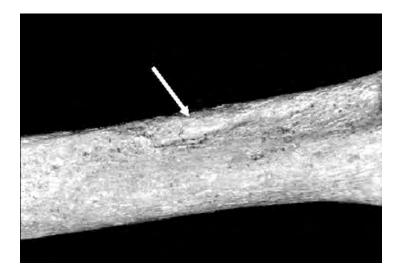


Figure 122. Stress lesion of the right humerus in a male aged 20–23 years (Burial 181).

Results of MSM Analysis

Percentages of moderate to severe MSMs scored per individual were calculated based on the available number of attachment sites present. For these calculations, only individuals with at least 9 scorable sites for the 33 attachments (greater than 25 percent) were included. The average percentage of MSMs per individual was 25.1 for males and 19.6 for females (Table 72). This difference was statistically significant (t-test, p = .03).

Average percent MSM scores increased with age for both males and females. Although lower than other age groups, at least some attachments showed significant hypertrophy and/or stress lesions even for individuals aged 15–24 years. The difference of 4.8 percent in average MSM scores in females between the two middle-age groups was the lowest and corresponded to

an average of 1.6 insertions per individual (out of the 33 total attachments). The youngest females showed a difference of 6.5 percent when compared to females aged 25–34, corresponding to 2.1 fewer insertions per individual. For males, the difference between the two middle-age ranges (7.6 percent, or 2.5 insertions) was greater than the difference between 15–24 years and 25–34-year-olds (4.1 percent, or 1.4 insertions). These results are consistent with a previous study showing smaller average insertion areas for younger males in a sample of twentieth-century African Americans and European Americans (Wilczak 1998).

These data suggest that accumulated stresses over time are usually necessary for MSM development, but those attachments under the greatest strain may develop quite rapidly. Alternatively, or in conjunction with high stress and rapid development, it may indicate full integration at a very young age for males into

			· -		
Age in Years	n ^a	Average No. of Attachments	Average Percent MSM	Highest Percent MSM	
Males					
15–24	14	27.5	16.7	39.4	
25–34	15	24.6	20.8	38.7	
35–49	40	28.0	28.4	57.6	
50+	15	28.2	31.4	60.6	
All ages ^b	92	26.6	25.1	60.6	
Females					
15–24	11	27.7	10.1	27.3	
25–34	17	28.0	16.6	39.4	
35–49	20	28.3	21.4	41.9	
50+	13	29.1	31.5	63.6	
All ages ^b	68	24.9	19.6	63.6	

Table 72. Average Moderate to Severe Musculoskeletal Stress Marker Scores by Age and Sex

the "adult" enslaved labor force, giving ample time for hypertrophy and stress lesion formation. Burial 323 is a male aged 19–30 who has moderate to severe MSM development at 39.4 percent (13 of 33) of his scorable attachments. Ten of these were stress lesions that included the linea aspera, quadriceps, biceps, deltoids and pectoralis/latissimus dorsi attachments. The large percentage of stress lesions suggests hard labor began at an early age for this individual.

Moderate to severe forms of MSMs were present in substantial frequencies. On a per case basis, females had an average of 6.5 occurrences, and males had 8.3 occurrences for the 33 attachments in the analysis. Because males had higher frequencies of MSMs and the age composition of the two samples varies, comparisons of specific attachments are presented by relative rank (Table 73). Of the 10 most frequent MSMs, only 2 are not common to both males and females. The coracoclavicular ligament ranked eighth in females (32.7 percent) and eleventh in males (28.2 percent). A much greater difference was seen for the biceps brachii muscle, which ranked tenth for males (33.8 percent), but twenty-third (8.2 percent) for females (Figure 123). In the lower limbs, the highest ranked attachments were the linea aspera and the gluteus maximus (1, 4 males and 2, 6 females; Figures 124 and 125). In the upper limbs, the deltoid, pectoralis major/latissimus dorsi, supinator, finger flexors, lateral scapula, and costoclavicular ligament were among the 10 most common MSMs for both males and females. Hypertrophy of the lateral border of the scapula may be another manifestation of teres major activity. It is also the origin of teres minor and the long head of the triceps, but MSMs of the insertions for these muscles were much less frequent in this population. Within the top ten, the rankings for the brachialis (Figure 126) was somewhat higher in females (1 vs. 5), whereas the pectoralis major/latissimus dorsi/teres minor was somewhat higher in males (3 vs. 7) (see Table 73).

The cutoff point for further discussion of the 10 most frequently affected attachments is arbitrary because there was no clear breakpoint between common and uncommon MSMs in this population. There was, however, some pattern in the data, with several MSMs related to movement around the shoulder joint found in high frequencies in both males and females. Pectoralis major, latissimus dorsi, and teres major insert into the intertubercular groove of the humerus. All three muscles act to adduct, extend, and rotate the humerus, the first two medially and the teres major laterally. They are sometimes called "climbing muscles" because they pull the torso up when the arms are fixed. In addition, the pectoralis can assist in flexing the

^a Includes individuals with nine or more insertions present.

All ages category includes adults of indeterminate age.

Table 73. Frequencies of Musculoskeletal Stress Markers in Males and Females

Rank	Male Attachment	No.	Percent	Female Attachment	No.	Percent
1	linea aspera	58	66.7	brachialis	32	55.2
2	deltoid	51	62.2	linea aspera	34	51.5
3	pectoralis major, latissimus dorsi, teres major	48	59.3	supinator	29	50.0
4	gluteus maximus	49	58.1	deltoid	30	48.4
5	brachialis	45	54.9	finger flexors	27	44.3
6	supinator	45	54.2	gluteus maximus	29	43.9
7	finger flexors	32	41.0	pectoralis major, latissimus dorsi, teres major	25	42.4
8	lateral scapula	28	35.4	coracoclavicular ligament	18	32.7
9	costoclavicular ligament	25	35.2	costoclavicular ligament	15	27.3
10	biceps brachii	26	33.8	lateral scapula	16	26.7
11	coracoclavicular ligament	20	28.2	cranial base-occiput	13	25.5
12	hamstrings	24	28.2	quadriceps	13	18.3
13	medial epicondyle-humerus	22	26.5	obturator internus/externus	11	16.7
14	cranial base-occiput	15	25.4	finger extensors	10	16.4
15	quadriceps	22	25.0	hamstrings	10	15.8
16	mastoid process	17	23.0	rotator cuff	9	15.8
17	lateral epicondyle-humerus	19	22.4	triceps brachii	9	14.8
18	rotator cuff	17	20.7	pronator teres/quadratus	8	14.3
19	trapezius/nuchal	15	18.1	medial epicondyle-humerus	9	13.8
20	iliopsoas	15	17.2	lateral epicondyle-humerus	7	10.8
21	subclavius	12	16.9	Achilles tendon	7	10.4
22	finger extensors	13	16.7	gluteus medius/minimus	5	9.3
23	triceps brachii	14	15.7	biceps brachii	4	8.2
24	obturator internus/externus	13	15.1	subclavius	4	7.3
25	Achilles tendon	12	13.6	teres minor	4	7.0
26	pronator teres/quadratus	7	8.6	plantarflexors	3	6.5
27	gluteus medius/minimus	6	8.0	iliopsoas	4	6.1
28	dorsiflexors	3	4.2	trapezius/nuchal	3	4.9
29	plantarflexors	3	4.1	dorsiflexors	2	4.5
30	teres minor	3	3.7	brachioradialis	2	3.6
31	anconeus	2	2.4	mastoid process	1	1.8
32	brachioradialis	1	1.3	intercondylar eminence	0	0
33	intercondylar eminence	1	1.4	anconeus	0	0

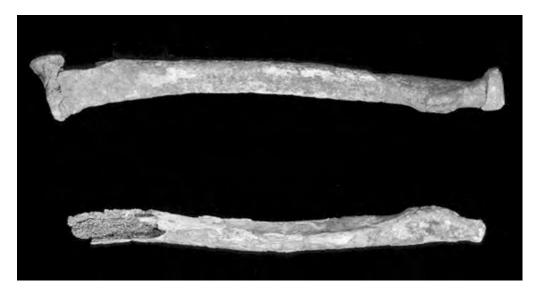


Figure 123. Hypertrophy of the biceps brachii insertion of the radii in a male aged 40–45 years (Burial 10).

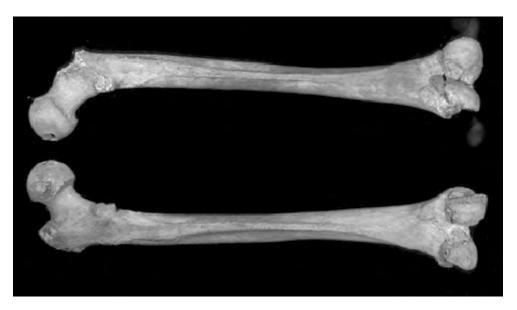


Figure 124. Hypertrophy of the linea asperae of the femora in a female aged 40–50 years (Burial 328).

humerus to the horizontal position, at which point the deltoid is necessary through full elevation. Latissimus dorsi is a powerful retractor of the pectoral girdle during activities such as rowing and the downstroke in swimming. The MSMs in the deltoid, which can abduct, flex, extend, and laterally and medially rotate the humerus, depending upon which fibers are active and the position of the arm, also suggest circumductory motions or loading of the shoulders and pushing loads up above shoulder height. Stress in the shoulder was also apparent for the costoclavicular ligament, which attaches the medial clavicle to the first rib and

limits the clavicle's anterior and posterior movement. The coracoclavicular ligament attaches the clavicle to the coracoid process and limits forward and backward movement of the scapula. This pattern of stress suggests activities that include alternating flexion and extension of the arm toward the chest, with the elbow bent, as has been described in skin scraping among Inuits (Hawkey 1988; Hawkey and Merbs 1995); lifting heavy objects up from the ground; stacking and unstacking materials; and placing burdens upon the shoulders or head. Overall, the pattern observed in the shoulder is compatible with many types of general

Figure 125. Hypertrophy of the gluteus maximus insertions of the femora in a male aged 17–18 years (Burial 174).

Figure 126. Hypertrophy of the brachialis insertions of the ulnae in a female aged 25–35 years (Burial 223).

labor involving heavy lifting and carrying as might be expected for this population.

Hypertrophy of the brachialis, which flexes the elbow, supports the presence of repetitive types of back-and-forth motion of the arm and forearm. Although higher in women, both sexes showed evidence of stress at this attachment. An additional flexor of the elbow and shoulder, the biceps brachii, showed hypertrophy in men. This could relate to general carrying functions because the biceps brachii opposes extension of the forearm against a load when carried with the elbows flexed and the forearms extended in

front of the body, or when carrying heavy buckets or baskets in the hands, with the arms down at the sides of the body (Galera and Garralda 1993). High frequencies of this MSM have been reported in masons, bakers, and agricultural populations. The biceps brachii also supinates the forearm, and both males and females have stress lesions and hypertrophy of the supinator muscle attachments. Supination occurs during twisting of the forearm, the type of motion used when opening a jar. The biceps is only important in supinating the forearm when the elbow is bent; the supinator muscle acts alone when the elbow is straightened (Kelley and

Angel 1987). Supination is required in many skilled crafts such as sewing and weaving that also use alternating extension and flexion of the elbow. These types of activities are of interest because MSMs in male and female finger flexors ranked seventh and fifth, respectively. Supinator MSMs have been ascribed to activities that manipulate loads while the elbow is extended, for tasks including citrus fruit picking, paddling a boat or canoe, and using heavy tools with a long reach such as furnace irons (Capasso et al. 1999).

High stress in the lower limbs at the linea aspera and gluteus maximus attachments also point to heavy labor. The gluteus maximus is an extensor and abductor of the thigh. Its function as an extensor is not important in ordinary walking but rather in more powerful movements such as climbing, stepping on a stool, and raising the trunk from a flexed posture. Muscles directly attached to the linea aspera are the adductors magnus, brevis, and longus, and the short head of the biceps femoris. The edges of the origins for the quadriceps muscles, vastus lateralis, and vastus medialis, extend to the lateral rim of the linea aspera and may be especially important in the development of the extreme hypertrophy and distinctive "mesa-like" shape seen in pilasterism. The adductors are important in maintaining balance during walking. Adductors mangus also can act to flex an extended thigh and longus can extend a flexed thigh. The short head of the biceps femoris acts to flex the knee. The vastus lateralis and medialis are two of the main extensors of the knee and are active in movements such as stair climbing and squatting. It is possible that they contribute to the MSMs seen in at least some individuals because the quadriceps insertion at the knee is affected in 25.0 percent of males (n = 15) and 18.3 percent of females (n = 12). Linea aspera development has been reported in several groups with strenuous locomotor activities, including Canadian fur traders, who jogged up steep portage trails, and sixteenth-century sailors and horseback riders (Capasso et al. 1999). The combination of linea aspera and gluteal MSMs suggests a greater role for hip flexion-extension stress rather than adduction stress. This new role is consistent with picking up heavy loads, both by bending at the hip and lifting up the burden or, as previously suggested, when lifting from a squatting posture (Mack et al. 1995). However, there is a great range of activities that could produce the pattern seen here, so it is not possible to ascribe these changes to one specific habitual behavior.

The examples from previous studies, given in conjunction with MSMs throughout this report, are used to illustrate the range of activities suggested as a cause of the observed lesions and not to assign specific tasks to this population. Although general load carrying would be expected as part of the labor for many enslaved, some of the same MSMs were most likely caused by different activities among these individuals. It is also important to remember that, unlike the culturally distinct and more standardized labor pattern expected in medieval agriculturists or in a thirteenth-century Inuit population, urban enslaved people would perform many types of labor. As we look at the sample and the various MSMs with high frequencies, it must not be forgotten that those particular MSMs do not represent the remains of any one individual. The significance of the high levels of MSMs in the shoulder and femur is suggestive because it would be associated more with heavy forms of labor rather than skilled crafts. It is interesting that males and females showed the same general pattern of stress but that there were some differences that may reflect sex differences in the types of work performed. Alternatively, they may reflect sex differences in anatomy and biomechanics.

Comparisons with other Enslaved Populations

There are few studies of enslaved skeletal populations in the Americas, and the type of information and number of individuals available vary considerably (Table 74). Poor preservation can also limit collectable data. This is the case for a Barbados, West Indies, enslaved plantation series, where analysis was largely confined to dental characteristics (Corruccini et al. 1982). Thus the number of enslaved populations where MSMs have been studied is extremely limited with just four burial sites documented. In addition, the Kelley and Angel's (1987) plantation sample did not comprise a single cemetery sample but instead consisted of scattered burials from across Maryland and Virginia.

Direct comparisons of the incidence of specific markers are problematic because of differences in data collection methodologies across studies. However, it is at least possible to compare general patterns of the types of stresses experienced. Kelley and Angel (1987) gave no precise descriptions relating to the occupational markers in the plantation/farm slave sample. They did find that overall nutrition and lon-

Location	Dates	n ^a	Population	Reference
Charleston, South Carolina	1840–1870	28	plantation slaves	Rathbun (1987)
New Orleans, Louisiana	1721–1810	13	urban slaves	Owsley et al. (1987)
Catoctin, Maryland	1790–1820	16	industrial slaves (ironworkers)	Kelley and Angel (1983, 1987)
Maryland and Virginia	1690–1860	76	plantation/farm slaves	Kelley and Angel (1987)

Table 74. Skeletal Studies of Musculoskeletal Stress Markers in Enslayed African Americans

gevity for Catoctin males were greater than for rural enslaved and attributed this to the value placed on skilled workers by the slaveholders, perhaps resulting in better nutrition and living conditions.

Markers of work stress in the Catoctin industrial enslaved sample are interesting, given the association of these enslaved workers with the ironworks and the relatively well-defined labor pattern. This sample showed some broad similarities to the New York African Burial Ground, particularly in the early age of onset for MSMs: (1) an 18-20-year-old female had well-developed attachments, particularly for the deltoid tuberosities and the clavicular attachments; (2) the youngest adult male, around 20 years old, had marked supinator crest and gluteal development; (3) a male in his late twenties also showed marked arthritis of the knee and right elbow; and (4) a female of approximately 18 years had a Schmorl's node. In general, Kelley and Angel (1987) painted a picture of fairly heavy stress with evidence of heavy lifting inferred from the frequency of deltoid, pectoral, and teres major MSMs, as well as shoulder and vertebral breakdown. These general patterns are shared with the New York African Burial Ground sample. There were several cases of cervical "arthritis" (osteophytosis?) that they associated with skilled craftpersons rather than carrying loads because of its co-occurrence with MSMs in the finger phalanges.

In their earlier work, Kelley and Angel (1983:17) also suggested a specific link between hypertrophy of the supinator crests in Catoctin males with "manipulating an iron with long reach." A later paper (Kelley and Angel 1987:207–208), however, acknowledged a considerably broader explanation of precision crafts work and use of an axe.

Rathbun (1987) also documented physical stress within a rural enslaved population from South Carolina. Unfortunately, he provided no information on the

age of the formation of stress markers, but the presence of hip osteoarthritis in 100 percent of the male sample implies at least some individuals in their 20s were afflicted. As measured by rates of osteoarthritis, stress was most apparent in the shoulder, hip, and lower vertebrae. This varies from the results of the New York African Burial Ground sample, in which appendicular osteoarthritis was lowest in the shoulder and moderate in the hip, in comparison to the knee, ankle, and foot. Of interest is the similarity when one examines incidence by sex. At both South Carolina and in our New York City sample, males were more frequently affected by osteoarthritis of the elbow and females at the knee (see Tables 70 and 71). Although the exact physical stresses and labor varied between these two populations, these similarities may be a signature of broad occupational differences, with males lifting and carrying more and female stress at the knee associated with bending and kneeling in household labor tasks. Incidence of cervical osteophytosis was similar to lumbar rates in males at South Carolina, but female cervical rates were nearly twice that of the lumbar rates. This suggests greater sex differences in the regional stresses of the neck and back than was found in the New York African Burial Ground sample. Perhaps this signals greater differences in the types of carrying done by males and females in this rural population versus our urban sample or, as suggested at Catoctin, females were bending the neck while performing some types of craft work and/or household work. The only MSM mentioned by Rathbun (1987) was the supinator crest insertion, which was more frequently affected in males than in females. Once again, no significant sex difference in this attachment was found in the New York African Burial Ground sample.

Owsley et al.'s (1987) sample from New Orleans should be most similar to the one from the New York

^a Includes adult remains only.

African Burial Ground because it also consisted of an urban rather than rural enslaved population, albeit with a very small sample size of 13 individuals. It is unclear at what age degenerative joint changes were first observable in this sample, but only 1 female showed moderate to severe lipping of the glenoid fossae, whereas 8 males showed pronounced osteoarthritic changes of various joints. In this study, joint surfaces were scored separately, so it is somewhat difficult to compare with our results. However, the upper limbs in general were more often affected than the lower limbs, a reversal of the pattern seen at the New York African Burial Ground. Greater similarities were found in MSMs for males with hypertrophy of the deltoid, supinator, and biceps brachii insertions. Muscle attachment sites changes in the lower limbs were "equally profound" for most males (Owsley et al. 1987:191). Although females had lower overall MSM scores in the New York African Burial Ground sample, the sex differences in New Orleans seem much greater, with only relatively minor hypertrophies in females, suggesting to the authors that they were performing less heavy physical labor than males, perhaps as enslaved domestic laborers. At least 2 of the older African American males at New Orleans did not show MSM development, again suggesting variability in the severity of labor within urban enslaved populations and a social hierarchy. Consistent with this finding, the New York African Burial Ground population had incidences of osteoarthritis and MSMs that varied greatly among individuals independent of age. Both urban sites contrast with the more consistently high levels of stress documented in the rural enslaved of South Carolina, who presumably would have engaged in plantation work and farmwork with less variability in the types of tasks performed.

Conclusions

There are no historical documents indicating the occupation or types of forced labor experienced by specific individuals from the New York African Burial Ground. Nor is it a site such as Catoctin Furnace or a hunting and gathering society where a limited number of activities might be inferred from contexts. In a series such as that from the New York African Burial Ground, linking individuals with specific occupations would be imprudent when one considers the wide range of possible activities that might affect a single marker, differences in individual anatomy, and idiosyncrasies in

the way a single task may be performed (Capasso et al. 1999; Jurmain 1999; Knüsel 2000; Stirland 1991). The inability to confidently assign specific occupations to individuals does not imply that all analyses of habitual activity markers are meaningless. Information about the general labor conditions and levels of mechanical stress can be assessed. The most consistent results of this study are those that suggest strenuous labor began at an early age for at least some individuals, based on the presence of osteophytosis, osteoarthritis, enthesopathies, and Schmorl's nodes in the youngest age category of 15–24 years. Osteoarthritis in the lower limbs and especially the ankles of individuals 15-35 years old suggests high general stress, perhaps walking on rough terrain, inclines, or stairs with loads. Osteophytosis and osteoarthritis of the cervical vertebrae, together with hypertrophy of the linea aspera, gluteus maximus, and deltoids, provide evidence of lifting and carrying loads on the back, shoulders, or head.

Few sex differences were present, so there is little evidence that males and females were specifically involved in activities that would result in large differences in overall mechanical stress levels. This does not mean that certain labors were not specifically designated to one sex, just that each sex could have performed separate but equally arduous tasks on a regular basis. Although sex differences were not common, they were present. The elbow joint showed somewhat higher frequencies of osteoarthritis among males, along with relatively higher hypertrophy for the biceps brachii and pectoralis major/latissimus dorsi/ teres minor attachments, all of which are associated with carrying and lifting loads. In females, there was a relatively higher ranking of hypertrophy of the coracoclavicular, supinator crest, and brachialis, which are associated with repetitive back-and-forth motions and forearm supination (The pectoralis major/ latissimus dorsi/teres minor are also included). Variability among individuals in the number and severity of stress markers has been emphasized throughout this chapter. This result is consistent with arduous labor in an eighteenth-century urban environment.

Trauma

Dislocation

We found only one clear case of a dislocation is apparent in the New York African Burial Ground population. It was in the left temporomandibular joint of a male aged 35–45 years (Burial 151). Dislocations do not

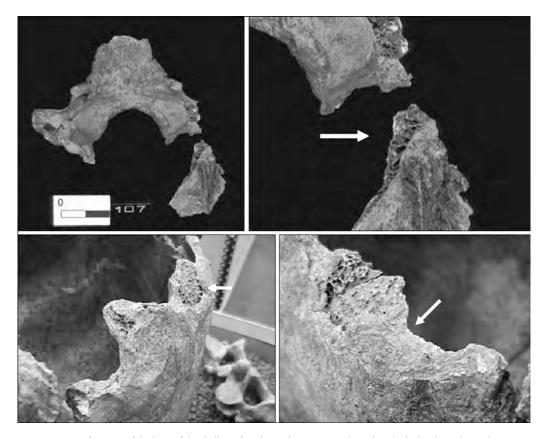


Figure 127. Ring fractures of the base of the skull in a female aged 35–40 years (Burial 107). The basilar is shown (*top left*) with a perimortem fracture (*close up, top right*). Other fractures are shown in the posterior occipital base (*bottom left*) exhibiting a beveled shape consistent with perimortem fractures (*close up, bottom right*). Ring fractures result from collision of the spine and skull base that can result from excessive, traumatic loading on top of the head (axial loading) (see Hill et al. 1995) or accidental or deliberate force to the top of the head, such as diving on one's head or the acute compression of skull base and spine produced by a hanging.

often leave a skeletal signature and when they do, they are usually subtle (Jurmain 2001). It is likely that dislocations are underdiagnosed in all skeletal populations.

Fracture Scoring

Premortem fractures were diagnosed when there was any remodeling of the bone (usually extensive healing), indicating survival after the trauma occurred. Perimortem fractures (unhealed fractures in living bone that occurred around the time of death) are those that are clearly not caused by recent burial or geologic processes, excavation, or curation (Merbs 1989b). Because it is often difficult to distinguish perimortem and postmortem fracture, a third category of ambiguous perimortem is included in the analysis.

Evidence of trauma in the skeleton is an indicator of both accidents associated with labor and violence against the individual. One would expect to observe fractures associated with both sources in an enslaved population. Perimortem fractures can be especially informative in the case of violence. Although it is not usually possible to associate fractures with cause of death (Burial 25, below, representing such a case), perimortem fractures are almost certainly indicative of the manner of death.

Results of Fracture Analysis

A total of 117 fractures in 23 males and 81 fractures in 18 females were present in adults (see Table 66). The cranium was the most common site for the fractures in males (23.5 percent; Figure 127), followed by the ribs (9.4 percent). Cranial fracture (11.1 percent) was common relative to fracture rates in other elements in females and was similar to the percentage of fractures in the femur (12.4 percent). The vast majority of these fractures were either perimortem or ambiguous perimortem for both males (79.5 percent) and females

		Ma	les			Fem	ales	
Skeletal Region	Premortem	Perimortem	Ambiguous Perimortem	% ⁸	Premortem	Perimortem	Ambiguous Perimorte m	% ^b
Skull	_	9	20	24.8	_	6	5	13.6
Axial	6	9	5	17.1	3	8	6	21.0
Upper limb	7	9	11	23.1	_	22	3	30.9
Lower limb	5	14	13	27.4	1	20	2	28.4
Hands and feet	6	_	3	7.7	5	_	_	6.2

Table 75. Number of Fractures by Skeletal Region in Adults by Sex

(88.9 percent). Roughly equal numbers of fractures were found in the upper and lower limbs (Table 75). Premortem fractures in females were primarily in the hands and feet (5 of 9), but in males they were found in all regions except the skull.

The distribution of fractures among the individuals is especially interesting. The average number of fractures among all individuals with fractures was 5.1 for males and 4.5 for females. If ambiguous perimortem fractures are excluded, the averages were 2.8 for males and 3.6 for females. Averages in this case are misleading as a few individuals account for the majority of fractures (Table 76).

A female aged 18–20 (Burial 205) had the greatest number of fractures, and all 32 were perimortem. The

Table 76. Number of Premortem and Perimortem Fractures per Individual

No. of Fractures	No. of Males	No. of Females
1	5	9
2	4	2
3	3	_
4	_	1
6	_	1
10	_	1
17	1	_
23	1	_
32	_	1

fractures were distributed throughout the skeleton, including the long bones of the arms and legs, the vertebrae, and the skull (Figures 128, 129, and 130). Burial 89 is a female aged 50+ with 2 premortem fractures of the right hand and 8 perimortem fractures to the right arms, legs, and pelvis. She also had a fracture in the occipital and cervical vertebrae. Of the 20 fractures in a male aged 45–55 (Burial 278), only one was a premortem fracture of the left clavicle; the rest were perimortem. The perimortem fractures were distributed throughout the body in the long bones, the pelvis, and vertebrae. He had no fractures in the skull. Burial 171 is a male with 4 premortem fractures of the left and right distal radius and ulnae. The perimortem fractures were located in the skull, vertebrae, and ribs.

Subadult Fractures

Fractures were present in three subadults, of unknown sex, aged 10–14. Burial 253 had a premortem fracture of the occipital and left temporal (Figure 131). Burial 180 had 2 premortem fractures of the left clavicle. There were also 2 ambiguous perimortem fractures to both the radii and ulnae. The remaining 18 fractures in the child of Burial 180 were perimortem. They were distributed throughout the skeleton including the long bones of all four limbs, the pelvis, and the cranium.

Numerous individuals in this population had fractures, and it is especially telling that many of them were perimortem. It is certainly possible that at least some of these fractures are related to the cause of

^a Percentage of the 117 fractures recorded for males.

^b Percentage of the 81 fractures recorded for females.

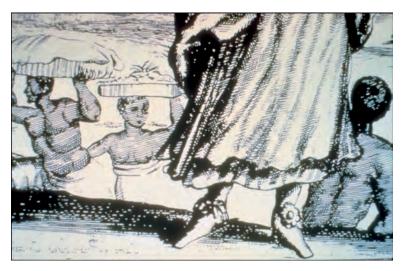



Figure 128. Seventeenth-century drawing of Africans in New Amsterdam showing normal axial loading.

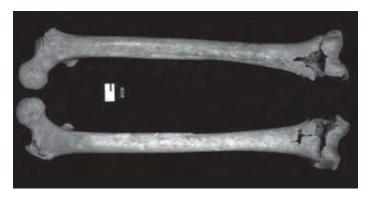
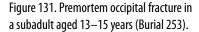
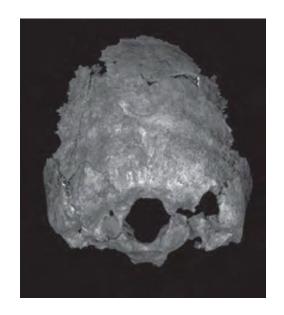




Figure 130. Perimortem fractures of the femora in a female aged 18–20 years (Burial 205).

death, particularly in cases of perimortem cranial fractures. For individuals with extraordinarily large numbers of perimortem fractures, it is unlikely that they were the result of accidental injury. Captives were subject to being beaten and murdered. It is also possible that the fractures were inflicted shortly after death for unknown reasons.

Burial 25 is the most dramatic case of interpersonal violence in the New York African Burial Ground sample. A 20–24-year-old, 5-foot 1-inch tall woman,

Burial 25 was found with a lead musket ball lodged in her rib cage (Figure 132). In her pathology assessment in the file of Burial 25, osteologist M. C. Hill wrote "smooth, gracile cranium and mandible; maxilla and mandible exhibit old, darkly stained fractures with beveled edges. The patterning of these fractures (restricted to the face) is consistent with a possible La Fort injury." With regard to the lower arms, the left radius was shown to have been shattered, with some of its fractures showing darkly stained and beveled

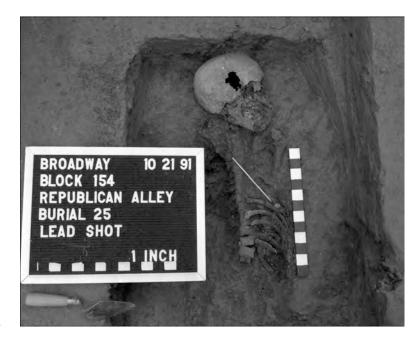


Figure 132. Burial 25 is shown in situ with musket ball.

Figure 133. Spiral fracture in lower arm of Burial 25.

edges. The right radius "has a spiral green bone fracture of the distal metaphysis. There is a large flake of cortical bone missing from the anterior surface in the area of the fracture. Examination of the margins of the flake shows what appears to be a ridge of new bone along the margin and a 'web' of new bone inside the flaked area. This area corresponds anatomically to the area of inflammatory periosteal activity on the right ulna." What is described here was a young woman who had been shot and who had also received blunt force trauma to the face (a rifle butt would customarily have been used to finish a shooting victim); she also suffered a "spiral," or oblique, fracture of the lower

right arm just above the wrist (Figure 133) caused by simultaneous twisting and pulling. These fractures, by virtue of their beveled form and dark color, were consistent with the fracture of living bone and were definitely not caused by the excavation. The small trace of new bone and the adjacent inflammatory response suggest that this woman lived for some short period, no more than a few days, after she was beaten. Her left arm also showed evidence of perimortem trauma but with less certainty than her other fractures exhibited.

The musket ball was located in the left chest. There was a large hole at the center of the shattered left

scapula, suggesting that the projectile had entered through the upper left back. Old fracture surfaces of the ribs were also suggestive of the extent of damage that was caused by the musket ball within the thorax of this young woman. The thinness of the scapula, however, made it difficult to observe beveling (expected when living or green bone breaks) so that assessment of the point of entry remains plausible although inconclusive. Burial 25, according to Holl's archaeological report (Holl 2001:116), was part of a "tight group of three burials that seems to constitute a well-delineated unit" that also included Burial 32 (a superannuated, 55+-year-old man) and Burial 44 (a 3–9-year-old child). This young woman appears to have died while resisting a person or persons with access to firearms.

Trauma at the New York African Burial Ground shows a unique pattern relative to other sites in the number of perimortem fractures. At Catoctin, there were a few minor antemortem fractures in a wrist (dis-

tal radius), ulna, clavicle, metatarsal, and metacarpal, plus a dislocation of a hip and perhaps one shoulder, which could have easily been related to accidental injury, although interpersonal violence was not ruled out. Incidence of fracture is not available from South Carolina. At New Orleans, no perimortem fractures were reported, but three males did have antemortem fractures that are more indicative of violence than accidental injury. One male had three cranial fractures and the degree of remodeling suggested that these fractures were inflicted in at least two different episodes. A second male had healed cranial fractures as well as a healed parry fracture of the ulna, and a third male also had a single parry fracture. The New York African Burial Ground does show cranial fractures in both males and females as well, suggesting interpersonal violence. The lack of such fractures at Catoctin may indeed reflect better treatment of skilled enslaved laborers in that location than in eighteenthcentury New York.

CHAPTER 12

Subadult Growth and Development

S. K. Goode-Null, K. J. Shujaa, and L. M. Rankin-Hill

Growth and developmental status is often used as an indicator of general health status at the population level. A brief review of literature regarding human skeletal growth and development indicates there are several methodologies for assessing these processes in human skeletal remains (Albert and Greene 1999; Flecker 1942; Goode et al. 1993; Gruelich and Pyle 1950; Hoppa 1992; Hoppa and Fitzgerald 1999; Hoppa and Gruspier 1996; Johnston and Zimmer 1989; Livshits et al. 1998; Miles and Bulman 1994; Saunders 1992; Saunders et al. 1993; Sciulli 1994; Todd 1937). Particularly, adult height may be used as a proxy for an individual's general state of childhood and adolescent nutritional status (Goode et al. 1993; Hoppa 1992; Miles and Bulman 1994). However, Hoppa (1992) and Miles and Bulman (1994) have recently proposed the use of cross-sectional long-bone growth profiles in archaeological populations as a means to assess a population's health status, using long-bone lengths as a proxy for stature estimates for immature remains. On the other hand, Goode et al. (1993:323) proposed standardizing (see below) all long-bone measurements as a method of representing any or all long bones measured in a single graphic plot. This method was promoted as a means of: (1) circumventing situations wherein infant and child skeletons are either fragmentary or skeletal elements are not equally represented, (2) promoting intra- and interpopulation growth comparisons, and (3) as a means of diagnosing individuals with grossly deviant standardized values for closer analysis of the abnormality.¹

A more thorough discussion of literature that pertains to studies relating long-bone lengths to health status can be found in Goode-Null (2002), Hoppa and Fitzgerald (1999), and Miles and Bulman (1994). Previously, many such analyses of long-bone lengths were used to predict the age of unknown individuals (Jantz and Owsley 1984; Ubelaker 1989). However, the Hoppa and Fitzgerald study revealed that diaphyseal long-bone lengths were too variable when comparing four populations across temporal and geographic contexts. Their study also illustrated the complex relationship between environment and the biology of growth by comparing age estimates based on humeral and femoral lengths for seven geographically and temporally disparate populations. Their conclusion was that standards for diaphyseal length were capable of grossly under- or overestimating the age of immature individuals.

The overarching goal of this chapter is to produce an anthropologically grounded body of information that will broaden our knowledge about the life experiences of enslaved African children in New York City. Specific chapter objectives are to: (1) assess the growth status of individuals; and (2) compare growth status, between the sexes, where appropriate, and with other indicators of health and well-being, specifically those associated with physical activity and labor, to achieve a more holistic perspective of childhood under enslavement. These objectives lend themselves to addressing the following more general question about life in the African and African American community of eighteenth-century New York City: How did the institution of slavery affect the overall health and well-being of the children in the New York African Burial Ground population?

Because of the often fragmentary and variable representation of skeletal elements of these individuals, it

¹ Goode-Null (2002) recommended using the broader definition of "disease" that incorporates trauma, rather than the more restrictive definition used by Goode et al. (1993) which focused on infectious events. Goode-Null also noted that this method provides an opportunity to verify age assessment in individuals with extreme δl_i or δl_{mean} values.

has been necessary to focus predominantly on growth, osteometric data analysis, in relation to health status and biomechanical stressors. However, development is partially addressed in relation to biomechanical stressors and the high incidence of craniosynostosis (premature fusion of the sutures in the cranium) diagnosed in this population. Given the extensive nature of the New York African Burial Ground Project, skeletal development will be analyzed in future studies and publications related to skeletal developmental asymmetry.

Methodology

The overall condition of the skeletal remains from this site ranged from poor to excellent. The assessment presented in this chapter consisted of the analysis of metric and nonmetric data collected according to the *Standards for Data Collection from Human_Skeletal Remains* (Buikstra and Ubelaker 1994). The data included but were not limited to: dental and skeletal age (e.g., epiphyseal closure), sex (for adult remains), pathology, trauma, and osteometrics. These data have been recorded and entered into an SPSS 10.0 Graduate Student Statistical Package database and were used in the analysis presented here.

The methodologies employed in the analysis of growth relied upon building a baseline population sample from which subsamples could be drawn for specific statistical tests. Therefore, the methodological section of the chapter first delineates how the baseline sample was selected and is followed by more specific descriptions of how subsamples were drawn.

Criteria for Baseline Sample Size

Several criteria for determining which individuals could be included were employed in the construction of a baseline sample for this study. First and foremost, only those individuals for whom age assessments could be made were included. Secondly, age assignment had to have been based on either dental ages (for individuals less than 15–20 years) or pelvic ages (for individuals 17 years and older), or more than one aging method if the individual was an adult without a pelvic age assessment. Age assessments for infant and juvenile remains were restricted to dental sequences as they exhibit the highest correlation with chronological ages (Demirjian 1986; Lewis and Garn 1960; Smith 1991). Additionally, dental ages are more highly cor-

related between sexes than either epiphyseal union or long-bone lengths. Specifically, skeletal development remains relatively androgynous until the onset of testosterone production in the 6–8-week-old male embryo (Pryor 1923; Tanner 1990). At this point, the female embryo continues to develop skeletally at a fairly steady rate, whereas males begin to lag. This sexually differentiated pattern of development progresses from days to weeks during fetal life and then to months postnatally (Pryor 1923; Pyle and Hoerr 1955). Similar reasoning underlies the preference for using pelvic morphology as the primary indicator of age in older subadults and adults. However, it was deemed appropriate to use mean-age assessments for two or more aging techniques in the absence of pelvic age indicators. This is predicated upon the higher probability of being able to apply alternative aging methods in a sex-specific manner when assessing older subadults and adults. Due to the criteria used for constructing this baseline sample, there may be some inconsistencies in the ages reported for some individuals between this and other chapters when results of the analysis are presented and discussed.

Criteria used for baseline selection resulted in a maximum possible sample of 349 individuals from which subsamples for specific analyses could be drawn. A maximum cut-off age of 25 years (young adult) for inclusion in the subsamples was chosen to ensure a more complete/complex analysis of how the lifeways of enslavement impacted the growth, development, and health status of this population. Of these 349 individuals, 153 were adults, and 194 were less than 25 years of age (172 were 20 years of age or less, and 135 were less than 15 years of age), and thus available as a baseline subsample to specifically assess growth status within the skeletally immature segment of the population.

Growth

Considerable data relating to human growth and development were collected and entered into the project database. These data included dental development, epiphyseal union scores, and long-bone measurements, which have been used to calculate composite ages for all individuals. This study used the existing New York African Burial Ground database to meet the objective of assessing overall and differential childhood health and well-being of the New York African Burial Ground immature individuals vis à vis growth. To achieve this objective, data related to

demographic trends in growth status were analyzed separately and in conjunction with data related to pathologies, biomechanical stress indicators, and trauma (see below).

A critique of long-bone growth profiles recommends the following methods to assess growth in this population: (1) standardized long-bone measurements (Goode et al. 1993; Sciulli 1994), and (2) stature estimation. It is generally understood that for both males and females, skeletal maturity (cessation of growth and union of secondary growth centers), under optimal conditions, is usually attained at about 20 years of age (21 years for males, 18 years for females). Thus, to adequately assess growth status in this population, all individuals under the age of 25 years (n = 194) and represented by postcranial remains comprised the base sample for data collection. The number of individuals that had sufficient aging criteria and long bones (minimally) that could be included in this portion of the analysis was 130. Of these 130 individuals, 48 were younger than 25 years.

Long-Bone Length Standardization

Long-bone measurements have been standardized for growth assessment using a very simple ratio calculation. Once age (specifically dental) determination was completed, diaphyseal length of a long bone was divided by the appropriate-for-age diaphyseal length found in one of the available growth standards. For example: Burial 96 was designated as a male with composite pelvic age of 17 years. His femoral length was 43 cm, but the Maresh (1970) standard (see below) indicates an average femoral length of 50.89 cm for 17-year-old males. Thus, the resulting proportion, signified by δl was 43/50.89 or 0.845. Thus, if an individual was represented by a single long bone (δl_i), or by multiple long bones, they could be represented in the plot of δl_i , for the population (for additional information on computing δl values, see Goode et al. [1993]). For those individuals represented by more than one long bone, a mean value of the δl_i for all separate long bones, designated δl_{mean} , can be calculated and plotted. As Goode et al. (1993) indicated, a δl_i greater than unity would represent a bone (or bones if δl_{mean}) that was (were) longer than the standard value, whereas the opposite was true for δl_i and/or δl_{mean} values less than unity.

The standard used to test this method was derived from the long-bone data series collected by the Child Research Council of Denver, Colorado, on living

children, as originally reported on by Maresh in 1955 (cf. Goode et al. 1993). However, the Denver research group continued to collect data until 1967, and Maresh provided an updated version of the data used by this method in 1970. The updated data reported on by Maresh has recently been republished (Scheuer and Black 2000) and is easily accessible, which promotes the use of this method for interpopulation comparisons, as well as further testing of the method itself to delimit its explanatory power in relation to skeletal growth across time and space.

One such test of the standardization of long-bone measurements is provided by Sciulli (1994). Sciulli also used the same standard for long-bone lengths (Maresh 1955) to calculate δl_i and subsequent δl_{mean} values. However, he substituted Fazekas and Kośa's (1978) long-bone data at 10 lunar months for Maresh's data at 2 months in the birth cohorts of the populations being tested.

Perhaps the most significant contribution of Sciulli's (1994:257) test of the standardized long-bone measure technique is his finding that not all δl , were equivalent, "and therefore the magnitude of the overall measure δl_{mean} depends on which long bone(s) contribute to it." This conclusion is based on two tests he performed. First, Sciulli plotted and compared Maresh's longbone lengths. This resulted in observing that the femur has the greatest growth velocity rate, followed by the tibia and fibula, which were similar. These were followed by the humerus, then the radius and ulna, which were also similar and showed the slowest growth rates. Secondly, Sciulli (1994:258) demonstrated that the five Native American samples in his test of the method "show a significant concordance in relative long bone length." This concordance indicates that, for these samples, elements rank from smallest to largest in length, relative to the Maresh standards, in the following manner: femur, tibia, fibula, humerus, and radius and ulna (equally large). Sciulli (1994:258) concluded that the pattern found in relative long-bone lengths for the five Native American samples can be explained if one accepts the hypothesis that "the most rapidly growing long bones will be the most greatly affected by nutritional and disease stress." Otherwise, he concluded that the patterns observed in his test of the method may be due to inherent differences in growth patterns of the long bones of Native Americans and those of the reference population.

Sciulli's latter point will be addressed below. However, it is important to note that Maresh's data on long-bone lengths are based on a sample composed of 123 males and 121 females who participated in this longitudinal (1930–1967) health study from birth until at least 18 years of age. These children were of white European descent (primarily Northern European), and were from families whose socioeconomic status can be characterized as middle- to upper-middle class. The logic behind recruiting children from such families was to insure that: (1) parents had a sufficient understanding of the project goals to maintain a long term commitment, (2) private medical care was available to the participants to reduce the influence of project staff over their health care, and (3) adequate food resources were not economically dependent (McCammon 1970:6).

The decision to use this reference population in standardizing long-bone measurements for the New York African Burial Ground population was predicated upon several factors. First, it will facilitate comparisons with previous studies. Second, the genetics of human growth and particularly development are the same for all populations. Specifically, a subset of developmental genes, known as homeobox genes, are essentially "phylogenetic" genes, and thus more highly canalized (under stricter biological control). These homeobox genes are responsible for controlling segmentation and sequencing of other genes during development (Mange and Mange 1988; Weiss 1993). On the other hand, genes controlling growth are much more plastic, or susceptible to environmental impacts (Center for Disease Control [CDC]/National Center for Health Statistics [NCHS] 2001: http:// www.cdc.gov/nccdphp/dnpa/growthcharts/training/ powerpoint/slides/011.htm. Here, it is necessary to be explicit regarding the meaning of the terms growth and development. Acheson (1966:465) noted that growth is "the creation of new cells and tissues," whereas maturation and development "is the consolidation of tissues into permanent form." These definitions were reiterated by Bogin (1999) when he noted that growth is a change in size, whereas development refers to a change in shape.

Consequently, secular trends in growth within and between populations, such as those reported by Sciulli (1994), have a stronger relationship to environmental factors such as political-economic conditions or hypoxic stress. Therefore, this reference population acts as a gold standard, providing an opportunity to assess the level of impact that the political economy of enslavement had on the growth of the New York African Burial Ground children. Lastly, this is one of the few longitudinal growth studies undertaken in

an environment with a naturally occurring stressor namely, high altitude. In addition to chronic exposure to hypoxic stress, McCammon's (1970:23–38) description of the population included sufficient background information related to the incidences, types, and timing of illnesses experienced by these children to indicate that there was exposure to short- and longterm health stressors that could negatively impact the growth of at least some of the children in this study. This, finding then, offsets to some extent the critique that the applications of growth standards derived from homogeneous populations do not adequately reflect the variety of natural and social conditions experienced by populations that do not meet the same demographic and/or epidemiological composition. This point will be revisited in the following section. In this study, the method for calculating standardized long-bone measures (δl_i and δl_{mean}) as described by Goode et al. (1993) was followed. However, as outlined by Sciulli, long-bone measures provided by Fazekas and Kośa (1978) were used to calculate the standardized long-bone measures in fetal and neonatal remains. Additionally, all individuals under the age of 25 years were included to verify the potential for diagnosing "catch-up" growth with this method when applied to cross-sectional data. Where possible, results from this analysis are compared to those of Goode et al. (1993) and Sciulli (1994).

Stature

Stature estimates for adults were calculated using regression formulas for African American males and females as developed by Trotter (1970; *cf.* Ubelaker 1989; Table 77). Fazekas and Kośa's (1978:264) nonsex-specific regression formulas, as seen in Table 78, for fetal and neonatal recumbent length were used to estimate the measurements for fetal remains. It should be noted that Table 77 indicates the standard error of the stature estimate per long bone, but Table 78 does not. The standard errors per long bone for fetal and neonatal recumbent length estimates were not provided by Fazekas and Kośa.²

Using formulas provided by Trotter and Fazekas and Kośa provides opportunities for comparative analyses with previous studies of enslaved Africans and African Americans.

² Based on an examination of the supporting data included in the original text, the lack of standard errors of the estimates is most likely a result of the extremely small values for this measure.

Table 77. African-American Stature Regression Formulas as Developed by Trotter (1970; cf. Ubelaker 1989)

	Male		Female
Element	Formulas (in cm)	Element	Formulas (in cm)
Humerus	length \times 3.26 + 62.10 \pm 4.43	Humerus	length \times 3.08 + 64.67 \pm 4.25
Radius	length \times 3.42 + 81.56 \pm 4.30	Radius	length \times 2.75 + 94.51 \pm 5.05
Ulna	length \times 3.26 + 79.29 \pm 4.42	Ulna	length \times 3.31 + 75.38 \pm 4.83
Femur	length \times 2.11 + 70.35 \pm 3.94	Femur	length \times 2.28 + 59.76 \pm 3.41
Tibia	length \times 2.19 + 86.02 \pm 3.78	Tibia	length \times 2.45 + 72.65 \pm 3.70
Fibula	length \times 2.19 + 85.65 \pm 3.53	Fibula	length \times 2.49 + 70.90 \pm 3.80

Table 78. Fetal and Neonate Stature Regression Formulas as Developed by Fazekas and Kośa (1978)

Element	Fetal/Neonate Regression Formulas (in cm)
Humerus	length \times 7.52 + 2.47
Radius	length × 10.61+ 3.95
Ulna	length × $8.20 + 2.38$
Femur	length × $6.44 + 4.51$
Tibia	length × 7.24 + 4.90
Fibula	length × 7.59 + 4.68

Only recently has a study been undertaken using regression formulas for estimating the stature at death for juvenile and subadult remains. In the present study, we use a sex-specific and composite-sex linear regression formulas for the calculation of estimated stature for immature remains (Tables 79–81). The regression formulas were constructed by using the National Center for Health Statistics (NCHS 2000)³ recumbent length (infant) and stature data (children 2-20 years of age) as the dependent variable and growth-series data for long bones (Maresh 1970) as the predictive or independent variable (Goode-Null 2002). Using these reference data sets to compute the regression formulas and applying them to the New York African Burial Ground remains is based upon the fact that secular trends in growth are highly correlated with environmental conditions, as mentioned previously. Specifically, the CDC/NCHS states they "promote one set of growth charts for all racial and ethnic groups. Racial- and ethnic-specific charts are not recommended because studies support the premise that differences in growth among various racial and ethnic groups are the result of environmental rather than genetic influences" (http://www.cdc.gov/nccd-php/dnpa/growthcharts/training/powerpoint/slides/011. htm).

All regression equations were applied in a sexspecific manner, if appropriate, to both mean longbone lengths and individual long-bone lengths. For individuals of indeterminate sex, the composite regression formulas for birth to less than 12 months, and greater than or equal to 12 months to less than 12 years were applied. Individuals over the age of 12 years were assessed by calculating male and female stature estimates that were then averaged to achieve a mean height at death. Stature was computed for a total of

³ Specifically, the data sets are the product of the U. S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics, Data Services.

Table 79. Regression Formulas for Calculating Stature of the Immature Remains of Male Children

Age	Regression Formulas (in cm)
	Humerus
0 <12 months	length \times 7.50 + 1.72 \pm 2.34 (p < .05, r^2 = .995)
≥12 months <84 months	length × $4.66 + 26.71 \pm .53$ ($p < .001, r^2 = .999$)
≥84 months <150 months	length $\times 4.54 + 29.66 \pm .80 \ (p < .001, r^2 = .999)$
≥150 months <186 months	length × $4.42 + 25.41 \pm 3.93$ ($p < .001, r^2 = .996$)
≥186 months	adult formula
	Radius
0 <12 months	length × 9.25 + 1.7 ± 3.29 (p < .05, r^2 = .990)
≥12 months <84 months	length × 6.43 + 23.42 ± .49 (p < .001, r^2 = 1.00)
≥84 months <150 months	length × $6.07 + 29.41 \pm .85$ ($p < .001$, $r^2 = .999$)
≥150 months <186 months	length \times 5.72 + 28.40 \pm 3.52 (p < .001, r^2 = .997)
≥150 months <186 months	length \times 5.72 + 28.40 \pm 3.52 (p < .001, r^2 = .997)
≥180 months	adult formula
	Ulna
0 <12 months	length × 8.88 - 2.87 \pm 2.64 (p < .05, r^2 = .995)
≥12 months <84 months	length × $6.07 + 20.23 \pm .54$ ($p < .001$, $r^2 = 1.00$)
≥84 months <150 months	length \times 5.68 + 27.41 \pm 1.04 (p < .001, r^2 = .999)
≥150 months <186 months	length \times 5.23 + 32.23 \pm 2.87 (p <.001, r^2 = .998)
≥186 months	adult formula
	Femur
0 <12 months	length \times 4.59 + 16.27 \pm 2.49 (p < .05, r^2 = .990)
≥12 months <84 months	length \times 2.97 + 35.85 \pm .39 (p < .001, r^2 = 1.00)
≥84 months <150 months	length \times 2.85 + 39.19 \pm .57 (p < .001, r^2 = 1.00)
≥150 months <216 months	length \times 3.14 + 16.13 \pm 3.55 (p < .001, r^2 = .995)
≥216 months	adult formula
	Tibia
0 <12 months	length \times 6.54 + 8.62 \pm 5.93 (p < .05, r^2 = .960)
≥12 months <84 months	length \times 3.64 + 36.03 \pm .37 (p < .001, r^2 = 1.00)
≥84 months <150 months	length \times 3.40 + 42.10 \pm .70 (p < .001, r^2 = .999)
≥150 months <216 months	length \times 3.79 + 13.43 \pm 2.07 (p < .001, r^2 = .998)
≥216 months	adult formula
	Fibula
0 <12 months	length × 6.77 + 9.08 ± 4.98 (p < .05, r^2 = .971)
≥12 months < 84 months	length \times 3.59 + 37.38 \pm .43 (p <.001, r^2 =1.00)
≥84 months < 150 months	length $\times 3.56 + 38.92 \pm .71 \ (p < .001, r^2 = .999)$
≥150 months < 216 months	length × 3.79 + 19.67 ± 2.75 (p < .001, r^2 = .997)
≥216 months	adult formula

Table 80. Regression Formulas for Calculating Stature of the Immature Remains of Female Children

Age	Regression Formula (in cm)
	Humerus
0 <12 months	length × 7.49 + 0.92 ± 2.76 (p < .05, r^2 = .993)
≥12 months < 84 months	length \times 4.70 + 25.63 \pm .63 (p < .001, r^2 = .999)
≥84 months < 150 months	length × $4.63 + 27.68 \pm 1.62$ ($p < .001$, $r^2 = .998$)
≥150 months	adult formula
	Radius
0 <12 months	length × 10.45 - 5.05 \pm 3.36 (p < .05, r^2 = .992)
≥12 months <84 months	length × 6.57 + 22.99 \pm .81 (p < .001, r^2 = .999)
≥84 months <150 months	length × 6.11 + 30.66 ± 1.30 (p < .001, r^2 = .998)
≥150 months	adult formula
	Ulna
0 <12 months	length × 10.06 - 10.52 \pm 3.24 (p < .05, r^2 = .993)
≥12 months <84 months	length × 6.13 + 19.90 \pm .88 (p < .001, r^2 = .999)
≥84 months <150 months	length × 5.60 + 29.70 ± 1.45 (p < .001, r^2 = .998)
≥150 months	adult formula
	Femur
0 <12 months	length $\times 4.49 + 15.90 \pm 1.94 \ (p < .05, r^2 = .994)$
≥12 months <84 months	length \times 3.01 + 34.15 \pm .56 (p < .001, r^2 = .999)
≥84 months <144 months	length × 2.88 + 38.49 ± 1.16 (p < .001, r^2 = .999)
≥144 months	adult formula
	Tibia
0 <12 months	length × $6.69 + 6.72 \pm 5.58$ ($p < .05$, $r^2 = .965$)
≥12 months <84 months	length \times 3.70 + 34.39 \pm .55 (p < .001, r^2 = .999)
≥84 months <144 months	length × $3.34 + 43.68 \pm 1.49$ ($p < .001$, $r^2 = .998$)
≥144 months	adult formula
	Fibula
0 <12 months	length × $6.90 + 7.62 \pm 5.71$ ($p < .05, r^2 = .963$)
≥12 months <84 months	length \times 3.65 + 35.98 \pm .65 (p < .001, r^2 = .999)
≥84 months <144 months	length × $3.58 + 38.69 \pm 1.28$ ($p < .001$, $r^2 = .998$)
≥144 months	adult formula

Table 81. Regression Formulas for Calculating Stature of the Immature Remains of Indeterminate Children

Age	Regression Formula (in cm)
	Humerus
0 <12 months	length × 7.51 + 1.17 ± 2.16 (p < .001, r^2 = .990)
≥12 months <144 months	length × $4.70 + 25.63 \pm .63$ ($p < .001$, $r^2 = 1.00$)
	Radius
0 <12 months	length \times 9.69 - 0.73 \pm 2.58 (p <.001, r^2 = .987)
≥12 months <144 months	length × $6.57 + 22.99 \pm .81$ ($p < .001$, $r^2 = .998$)
	Ulna
0 <12 months	length \times 9.32 - 5.67 \pm 2.49 (p <.001, r^2 = .990)
≥12 months <144 months	length × 6.13 + 19.90 ± .88 (p < .001, r^2 = .999)
	Femur
0 <12 months	length $\times 4.54 + 16.08 \pm 2.29 \ (p < .001, r^2 = .980)$
≥12 months <144 months	length × 3.01 + 34.15 ± .56 (p < .001, r^2 = .999)
	Tibia
0 <12 months	length × $6.63 + 7.51 \pm 3.55$ ($p < .001$, $r^2 = .967$)
≥12 months <144 months	length \times 3.70 + 34.39 \pm .55 (p < .001, r^2 = .999)
	Fibula
0 <12 months	length × $6.87 + 8.25 \pm 3.17$ ($p < .001$, $r^2 = .973$)
≥12 months <144 months	length \times 3.65 + 35.98 \pm .65 (p < .001, r^2 = .999)

132 individuals from the New York African Burial Ground population. Comparisons to the CDC growth standards were then undertaken for stature estimates for all individuals under age 25 years for whom age assessments were made (n = 48).

Development

As noted previously, the extensive nature of the New York African Burial Ground and the fragmentary and variable representation of skeletal elements did not support an analysis of development at this time. Future studies are planned for such an analysis when additional data can be collected from radiographic films. However, it was possible to undertake a brief qualitative examination and discussion in relation to the presence of craniosynostosis. Craniosynostosis was observed in a total of 15 individuals under the age of 25 years. This high rate of occurrence will be examined in relation to primarily potential biome-

chanical, and to a lesser extent nutritional and genetic, stressors or causes.

These results were also compared to data available in the project database regarding trauma and nondisease pathologies related to biomechanical stressors in an attempt to assess explanatory relationships in an age- and sex-specific manner. Specifically, long-bone fractures were assessed in relationship to individual growth status, as were the nondisease pathologies of arthritic lesions, enthesopathies, and hypertrophies. Also, generalized nonspecific infectious lesions and anemias were correlated with stature to assess how differential access to nutritional resources may have impacted the growth of individuals in the New York African Burial Ground. All data analysis was accomplished using SPSS 10.0 Graduate Student Statistical Package for Windows. Specific tests used included chi-square and correlations, with significance levels set at 5 percent (p = .05). Power analyses were performed to determine the probability of detecting type

Table 82. Power Values for Statistical Chi-Square Tests Based on Subsample Sizes and Magnitude of Effect

Sample	n w = 0.10		w = 0.30	w = 0.50
Total subsample	48	0.1065	0.5472	0.9337
Males	3	0.0534	0.0815	0.1393
Females	5	0.0557	0.1029	0.2010
Indeterminate	40	0.0969	0.4751	0.8854
0 < 6 years	30	0.0850	0.3759	0.7819
≥6 <16 years	10	0.0615	0.1578	0.3526
≥16 <25 years	8	0.0592	0.1357	0.2930

Note: Effect size is denoted by w.

II (beta) errors (Hodges and Schell 1988). The power values, provided in Table 82, were calculated for small (w = 0.10), medium (w = 0.30), and large (w = 0.50) effects for the specific subsample sizes.

Analysis

There is a longstanding recognition of the synergistic relationships between (1) growth, (2) access to nutritional resources, and (3) chronic or acute infectious states (e.g., see Goodman 1992; Rankin-Hill 1997). However, few assessments of children in the archaeological record have included more than cursory examinations of activity-related skeletal indicators that integrate this triad of health factors. Therefore, the analysis presented below includes biomechanical indicators of stress as a means of enhancing the overall understanding of children's lives by creating a quartet of interrelated factors and indicators of health. As noted previously, 48 individuals comprise a population subsample in the analysis presented below, relating to growth status, health, and labor.

Growth Assessment

Growth assessment provides an entry point for gaining a better understanding regarding what is impacting the distribution of deaths and life expectancies of the young adults, children, and infants from the New York African Burial Ground. The research presented here focuses on standardized long-bone lengths and stature estimations. Preliminary growth evaluations for these individuals consist of comparing all individuals represented by the major long bones of the

extremities to modern growth standards for height. This was done for both individual long-bone elements, as standardized measures, and stature estimates.

Standardized Long-Bone Measures

Long-bone standardization is a relatively new method for assessing human growth from cross-sectional data that biological anthropologists often investigate. As was presented above, the method of standardization is a simple ratio (δl_i or δl_{mean}) of specific long bones to a corresponding growth standard by element. Table 83 provides the δl_i and sex-specific δl_{mean} values for the total population subsample (n = 48). As can be seen, this table also provides the actual number of available elements by sex for calculation of the ratio. This table illustrates that Sciulli's (1994) conclusion—various long bones contribute differentially to δl_{mean} —is correct. When the chart in Figure 134 is consulted, it is obvious that this method does not allow the diagnosis of catch-up growth (accelerated adolescent growth that can greatly compensate for childhood growth retardation) in this population. However, Sciulli's (1994) conclusions that environmental factors will more likely affect the long bones with the most rapid growth velocity may be valid for this population. Table 83 indicates that of the sex-specific calculations the femur, tibia, and fibula (but not the ulna) had some of the lowest $\delta l_{\mbox{\tiny mean}}$ values. The relatively high value for the fibulae has more to do with the exceptionally low representation of this element in the remains analyzed here. The fibulae that were present for analysis represented some of the taller

Sex	Humerus	Radius	Ulna	Femur	Tibia	Fibula	Mean	
Male	0.94		0.92	0.84	0.88		0.90	
n	1		1	1	1		3	
Female	0.98	1.03	1.02	0.97	0.98	0.91	0.98	
n	5	2	4	5	2	1	5	
Indeterminate	0.94	1.04	0.83	0.96	0.87	0.90	0.92	
n	28	15	15	22	13	2	40	
Mean	0.95	1.04	0.92	0.92	0.91	0.90	0.94	
n	34	17	20	28	16	3	48	

Table 83. δI_i and δI_{mean} Values for the NYABG Population Subsample, by Sex

Mean Standardized Long Bone Measures

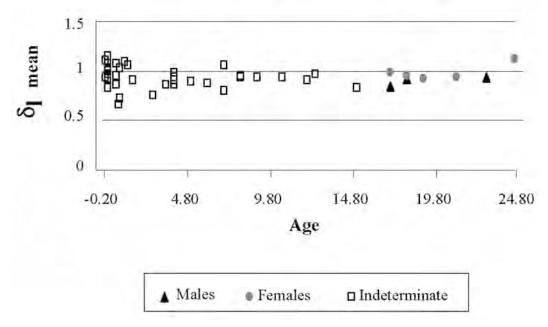


Figure 134. Mean standardized long bone measures.

(see discussion of stature below) and more mature members of the subsample, thus potentially skewing the value upwards.

Individual δl_{mean} values indicate that 73 percent (n = 35) of the total subsample fall below the level of unity. Within this subsample, only 1 female had a δl_{mean} value in excess of unity, whereas 13 individuals of indeterminate sex and no males had δl_{mean} values that exceeded unity. However, the lowest value for δl_{mean} (0.69) represented an approximately 6-month-old infant (Burial 312). A close scrutiny of the aging and

sexing database indicate that there were no discrepancies or errors made in the age assessment.

Overall, 79 percent of the individuals (n = 38) had δl_{mean} values that were greater than 0.9. On the surface, this would seem to indicate that most children and young adults in this subsample had at least adequate nutrition to sustain growth. However, how standardized long-bone measures influence our interpretation of environmental interactions with growth will be incorporated more fully in the following analyses of stature and pathologies.

New York African Burial Ground Male Stature Estimates

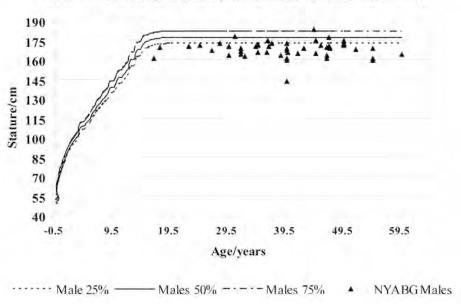


Figure 135. New York African Burial Ground stature estimates: male.

New York African Burial Ground Female Stature Estimates

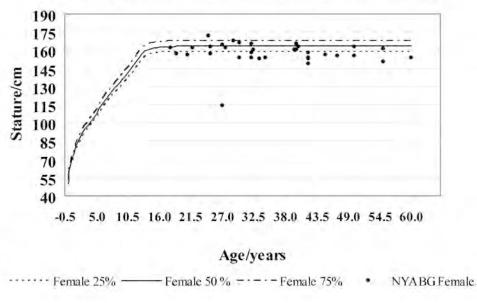


Figure 136. New York African Burial Ground stature estimates: female.

Stature Estimates

Stature estimates were calculated in a sex-specific manner for all individuals represented by long bones whose biological age could be determined according to the criteria set forth above. Thus, stature estimates were calculated for a total of 129 individuals (males, n = 54; females, n = 34 indeterminate, n = 41). Figures 135–137 illustrate individual stature estimates for these New York African Burial Ground individuals in relation to the select percentiles of the CDC/NCHS stature standards for males, females, and individuals of indeterminate sex, respectively. In these figures, male and female stature estimates are compared to

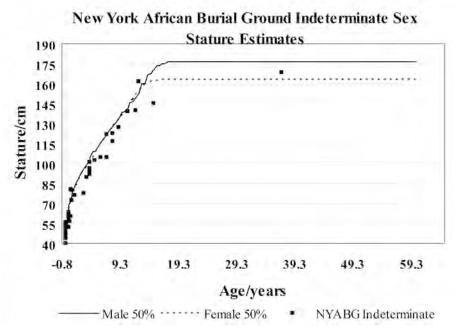


Figure 137. New York African Burial Ground stature estimates: indeterminate sex.

the twenty-fifth, fiftieth, and seventy-fifth percentiles of the CDC growth standards, and individuals of indeterminate sex are compared to the CDC male and female fiftieth percentiles. Although all three figures indicate a "normal" pattern of growth, especially as illustrated in Figure 137, they also indicate the presence of moderate to severe growth deficits at various points in the life span. Figure 135 identifies an overall growth deficit for nearly all the males in this mortuary subsample. When a close examination of males less than 25 years is undertaken by comparing Figure 135 and Table 84, it becomes apparent that all (n = 3)males fall below the tenth percentile and would be classified with moderate to severe growth impairment. There are two males (66.7 percent) who do fall below the third percentile. Females younger than 25 years, as represented by Figure 136 and Table 85, have consistently higher stature estimates for assessed age. Sixty percent of all females (n = 3) fall below the fiftieth percentile, whereas 40 percent (n = 2)fall at or above the fiftieth percentile. Two females (40 percent) fall below the twenty-fifth percentile in growth, which includes one female (20 percent) at the tenth percentile. However, females have a far greater percentage (n = 3, or 60 percent) of individuals who fall within and above the range for normal growth, with one of these females (Burial 276) falling above the ninetieth percentile.

Figure 137 is provided as an evaluation of using a composite male-female regression formula for estimating the stature for individuals of indeterminate sex. No calculations of growth percentiles were undertaken for this segment of the population subsample.

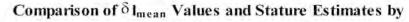

However, by looking at Figure 137 it is quite apparent that the individuals (predominantly infants and young children) were experiencing similar patterns in growth as the male and female standards, although the demarcation between those experiencing poor growth and those with normal or close to normal growth were more pronounced. As with the previous two figures, it is apparent that several individuals fall well below the twenty-fifth percentile of growth (male or female standards). Overall, an initial assessment of these data, based on the figures and tables provided above, illustrate that stature, as a gauge of health and nutritional status, indicates females within this mortuary sample were healthier in relation to their male counterparts. Yet, as pointed out by Wood et al. (1992), this conclusion may be precipitous if considered a direct evaluation of individual risk of death due to underlying differences in frailty. A further evaluation of the sex-specific stature estimates in relation to health are addressed below. The stature estimates provided above also need to be considered in relation to the standardized long-bone measurements and pathology assessment before fully committing to this conclusion.

Table 84. Male Stature Estimates and Growth Standard Percentile Rankings for Individuals Less Than 25 Years of Age Only

Burial No.	Age Range (yrs)	Stature (cm)	% Rank			
96	16–18	161.09	2			
427	16–20	163.19	9			
343	19–23	170.14	2			

Table 85. Female Stature Estimates and Growth Standard Percentile Rankings for Individuals Less Than 25 Years of Age Only

Burial No.	Age Range (yrs)	Stature (cm)	% Rank
383	14–18	161.69	50
259	17–19	162.03	49
205	18–20	156.65	24
122	18–20	156.35	10
276	20–24	158.17	94

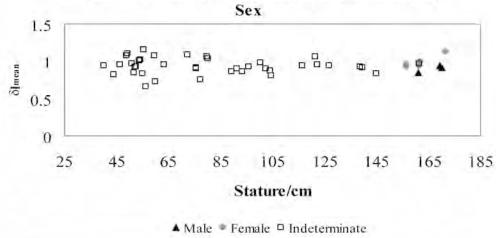


Figure 138. Comparison of individual δI_{mean} values and stature estimates by sex.

The relationship between the δl_{mean} values presented above and stature is illustrated in Figure 138. The δl_{mean} values are presented by sex and in relation to stature estimates. They further illustrate that on the whole, the population was not reaching its growth potential. Of the 71 percent (n = 35) of the subsample that fell below the unity level, 3 (9 percent) were males, 5 (14 percent)

were females, and 27 (77 percent) were individuals of young adolescents and children of indeterminate sex. This finding mirrors the 72 percent of the population subsample which fell at or below the twenty-fifth percentile for stature, considering that there were 39 immature individuals of indeterminate sex for which percentile rankings could not be assessed.

Correlations were undertaken to test the relationship between δl_{mean} and stature estimates, or their percentile rankings, to determine the validity of assessment of growth status based on the visual relationship between these two variables. The two-tailed test of δl_{mean} and stature estimates indicated there was a significant relationship between the two variables, something that could easily be predicted from Figures 134 and 137. However, the test of relationship between δl_{mean} and percentile rankings of stature was significant at the p < .01 level, with a correlation coefficient of 0.781 and an adjusted r² value of 0.601. The high but not perfect correlation between δl_{mean} values and percentile rankings is expected because both methods are founded on a common reference data set. However, the ability of each method to produce results that do not regress to the mean indicates that either or both of these methods can be used to probe issues of population health. The above analyses of growth status using standardized long-bone measures and stature estimates indicate that the population was, minimally, not having its physical needs met. However, physical growth, as measured by stature or long-bone growth, is not the only marker of nutritional status or health, nor is nutrition the only factor that influences growth. Therefore, the following section will present an analysis of data that relates to other skeletal indicators of nutritional stress, general infection, and indicators of biomechanical stress.

Pathological Assessments

The database available for pathological assessment of individuals from the New York African Burial Ground contains over 16,000 entries related to pathology by type, element, aspect, and severity. Many of these entries are general codes that allow researchers to assess suites of pathologies for differential diagnosis, still a smaller percentage are codes that relate to specific disease or "abnormal" conditions. The analysis presented here relied on a survey of both types of pathological codes. The conditions that will be analyzed below are indicators of nutritional status, specifically pathologies related to anemias and generalized nonspecific infectious lesions, and biomechanical stress markers. The authors would like to remind readers that information presented in this chapter is restricted to a small subset of biologically immature individuals and may not reflect results presented in previous chapters (i.e., Chapter 10).

Nutritional and General Infection Indicators

Because of the synergy between nutrition and generalized infectious processes, this section will address both sets of pathologies. The first set of data to be considered is those associated most often with nutrition first and disease processes second. These data are related to anemia, specifically lesions found frequently in the craniofacial region known as porotic hyperostosis and their corresponding lesions in the eye orbit referred to as cribra orbitalia. Both orbital and cranial lesions will be referred to as porotic hyperostosis throughout the remainder of this chapter. Abnormal long-bone morphology can also be attributed to nutritional deficiencies, such as anemia, rickets (vitamin D deficiency), and scurvy (vitamin C deficiency), as well as biomechanically induced stress during growth or over prolonged periods of time. These indicators of either nutritional status and/or biomechanical stress will also be considered below. However, as there are only limited ways in which bone can react to various insults (Ortner and Putschar 1981), infectious- and dietary-related lesions may be similar in appearance at the gross level of analysis and can only be diagnosed at the microscopic or radiographic level. Thus, lesions characterized as reactive lamellar bone will be attributed to the category of generalized infectious processes, although undoubtedly some will eventually be diagnosed otherwise.

Nutritional Indicators

Porotic hyperostosis (PH) is most often associated with childhood nutritional deficiencies in iron during peak growth phases or may be attributed to genetic hemolytic disorders such as thalassemia or sickle cell anemia. The purpose of the analysis presented here is not to identify PH as iron deficiency anemia or as a hemolytic disorder; rather, it is to assess the presence of anemia-related lesions in relation to the health status of the infants, children, and young adults and its connections to their growth. Also, both nutritionally induced and inherited forms of anemias have negative consequences for growth, vis à vis their impact on cellular metabolism.

The individuals diagnosed with PH lesions in the subsample used in the current growth analysis are shown in Table 86. In addition to PH, infantile cortical hyperostosis (ICH), which is diagnosed in long

Table 86. Occurrence of Porotic Hyperostosis and Infantile Cortical Hyperostosis in the NYABG Population Subsample

Burial	Age Range (yrs)	Long Bone	Frontal	Parietal	Temporal	Occipital	Orbital	Sphenoid	Maxillary	Zygomatic	Total Pathologies
Male											
343	19.0-23.0	_			_	_	2	_	_	_	2
Female											
205	18.0.–20.0	_	_	2	_	1	_	_	_	_	3
122	18.0-20.0	—	1	4	_	1	2	1	_	_	9
Indeterminate											
186	0.0-0.17	—			_	_	2	_	_	_	2
64	0.38-0.88	_		2	_	1	1	_	_	_	4
225	0.5-1.25	6			_	_	2	_	_	_	8
91	0.67-1.30	2	_		_	_	_	_	_	_	2
252	1.0-2.0	6	_		_	_	_	_	2	_	8
7	3.0-5.0		_	_	1		2	_	2	_	4
55	3.0-5.0		_	_	1		2	_	2	_	4
138	3.0-5.0			2	2	1	_			2	7
39	5.0-7.0	_		_	2	_	2		_	_	4
35	8.0–10.0	_			_	_	2	_	_	_	2
368	10.5–13.5		_	_	_	_	2		_		2
Total (n)	14	3	1	4	2	4	10	1	3	1	61

bones and may be a genetic condition or viral disease associated with anemia (Varma and Johny 2002), is included in the table. The number of PH and ICH lesions per individual is represented as a means to characterize individual frailty. Thirteen (27 percent) of 48 individuals have PH lesions, and a total of 29 percent of 48 individuals have hyperostosis lesions (PH or ICH). Males represent 7 percent (n = 1) of the affected individuals with sex assessments, and 33 percent of all males in this population subsample (n = 3). Females, in comparison, represent 14.3 percent (n = 2) of the individuals with PH, and 40 percent of the total number of females in the subsample. The individuals of indeterminate sex with PH (n = 11) were young infants and children. Five of these children (45.5 percent) were infants less than 2 years of age. In

all, minimally 61 PH lesions were recorded for these 14 individuals. Given the small sample of individuals who could be sexed, the rate of lesions per individual (4.4) was calculated for the entire subsample. Tests for relationships between PH and $\delta l_{\mbox{\tiny mean}}$ and percentile rankings of stature were made using the chi-square test. These tests were made for the total population subsample, as well as separately for age and sex groupings when the sample size permitted. The results of these chi-square tests are presented in Table 87. As can be seen in this table, the significant levels (p) of the chi-square statistic were well above a standard alpha of 0.05. Additionally, the power values computed to assess the possibility of type II (beta) errors (Hodges and Schell 1988:175) are also indicated in this table. The values for power presented in this table are those

Table 87. Chi-Square Test Results for Relationship between Porotic Hyperostosis (PH) and δI_{mean} and Percentile Rankings for Stature

Chi-Square Test	Chi-Square Value	p
Total population subsample ($n = 48$; power = 0.9337)		
PH by δl _{mean}	4.168	.654
PH by percentile ranking	7.352	.499
Age group: 0 < 6 years (n = 30; power = 0.7819)		
PH by δl _{mean}	4.541	.604
PH by percentile ranking	5.284	.727
Age group: 6 < 16 years (n = 10; power = 0.3526)		
PH by δl _{mean}	0.476	.788
PH by percentile ranking	1.667	.435
Age group: 16 < 25 years (n = 8; power = 0.2930)		
PH by δl _{mean}	1.60	.449
PH by percentile ranking	5.156	.272
Sex: male (n = 3; power = 0.1393)		
PH by δl _{mean}	0.750	.386
PH by percentile ranking	3.00	.223
Sex: female (n = 5; power = 0.2010)		
PH by δl _{mean}	0.833	.361
PH by percentile ranking	5.000	.082
Sex: indeterminate (n = 40; power = 0.8854)		
PH by δl _{mean}	4.333	.632
PH by percentile ranking	5.308	.724

calculated assuming a large size effect (w = 0.50; also reported in Table 80).

Generalized Lesions of Infection

An analysis of generalized or systemic infectious lesions produced very similar results as those for the relationship between PH and growth status. The pathological observations that constituted generalized infection as a variable were: lamellar reaction (active lesion), sclerotic bone (healed lesion), bone loss, and presence of reactive woven bone (concurrently active and healing lesion). The analysis presented here focuses on the presence of infectious lesions in long bones as these skeletal elements contribute significantly to an individual's overall stature at maturity. As with PH and ICH lesions, the number of infec-

tious lesions per element per individuals is presented in Table 88 as a means to contemplate individual frailty. Table 88 demonstrates that it is possible to calculate that a total of 25 individuals (52 percent) in this subsample (n = 48) were diagnosed as having at least one lesion indicative of generalized infections. As with PH, individuals of indeterminate sex represent the largest group that was diagnosed with generalized infectious lesions. Females, though, had the highest rate of lesion occurrence (18 per person), followed by males and indeterminate individuals, with lesion rates of 15 per person and 10.6 per person, respectively. However, it should be noted that all males (n = 2) and all females (n = 3) with this diagnosis were over the age of 16 years, whereas all individuals of indeterminate sex (n = 20) were under 16 years of age.

Table 88. Generalized Infectious Lesions as Diagnosed in Long-Bone Skeletal Elements

D	Age	Hum	nerus	R	Radius		Ulna		Fei	nur	Ti	bia	Fibula		ula	Total
Burial No.	Range (yrs)	L	R	L	R	L	R		L	R	L	R		L	R	Lesions
Male																
427	16.0–20.0					2	2		2	2	2	2		3	3	18
343	19.0–23.0	1	1	1	1	1	1		1	1	1	1		1	1	12
Female																
259	17.0–19.0								1			1				2
122	18.0-20.0	3	3	3	3	3	3		3	3	3	3		3	3	36
383	14.0–18.0	2	2	1	1				3	3	1	1		1	1	16
Indeterminate																
117	0.0-0.0	1		1		1			1							4
42	0.0-2.0			1		1			1	1	1	1				6
53	0.25-0.75	1	1		1	1	1		1	1	1	1				9
108	0.25-0.75	1	1	1	1	1	1									6
86	6.0-8.0		2		2				2	2	3	3				14
225	0.5-1.25	2	2	1	1	2	2		3	3	1	1		1	1	20
91	0.67-1.3			1	1	1	1		1	1						6
252	1.0-2.0	2	2		2		2		3	3						14
363	1.0-2.0	2	2	1	1	1	1		3	3						14
187	1.5-4.0	2	2	2	2	2	2		2	2	2	2		2	2	24
22	2.5–4.5	2	2	1	2	1	1		1	1	2	2			2	17
55	3.0-5.0	1	1	1	1	1	1		1	1	1	1		1	1	12
58	3.5–5.5	2	2	1	1						2	2		2	2	14
219	4.0-5.0	2	3		1		1		2	2	3	3		1	1	19
39	5.0-7.0	1	2						2	2	2	2		2	2	15
396	6.5–8.5			1	1				1	1						4
35	8.0–10.0					1	1									2
180	11.0-13.0								1	1						2
125	16+										1	1		1	1	4
253	13.0–15.0	1	1						2	2						6
Total no. of individuals	25															296

Table 88 also indicates that 8 individuals (32 percent) had 15 or more lesions at multiple osseous sites. A total of 20 individuals (80 percent) had multifocal sites of infectious lesions in both upper and lower extremities; these individuals could be classified as having systemic (possibly chronic) infection and rep-

resent 42 percent of the total population subsample. Chi-square tests of relationship between infection and indicators of growth (percentile rankings and δ_{mean} groups) were computed for the total population subsample, by age group and by sex. The results of these tests, shown in Table 89, demonstrate that

Table 89. Chi-Square Test Results for Relationship between Infectious Lesions and Sl_{mean} and Percentile Rankings for Stature

Chi-Square Test	Chi-Square Value	р
Total Population subsample (n = 48; power = 0.933	37)	
Infection by δl _{mean}	9.043	.171
Infection by percentile ranking	9.997	.265
Age Groups: $0 < 6$ years ($n=30$; power = 0.7819)		
Infection by δl _{mean}	30.000	.414
Infection by percentile ranking	12.254	.140
Age Group: 6< 16 years (n = 10; power = 0.3526		
Infection by δl _{mean}	10.000	.350
Infection by percentile ranking	1.667	.435
Age Group: $16 < 25$ years (n = 8; power = 0.2930)		
Infection by δl _{mean}	8.000	.333
Infection by percentile ranking	5.156	.272
Sex: Male (n = 3; power = 0.1393)		
Infection by δl_{mean}	3.000	.083
Infection by percentile ranking	3.000	.223
Sex: Female (n = 5; power = 0.2010)		
Infection by δl_{mean}	1.875	.171
Infection by percentile ranking	2.917	.233
Sex: Indeterminate (n = 40; power = 0.8854)	· · · · · · · · · · · · · · · · · · ·	
Infection by δl _{mean}	6.722	.347
Infection by percentile ranking	10.250	.248

infection was not related to δ_{mean} values or percentile rankings for stature in this sample. Additionally, a Fishers Exact chi-square evaluation of the potential relationship between anemia and infectious processes was undertaken. This test resulted in a majority of significance levels in excess of 0.100. The results of these analyses indicate that generalized infection does not contribute greatly to our understanding of the variation in growth status among members of this population's subsample nor the presence of PH lesions.

Abnormal Bone Morphology

The presence of abnormal bone morphology, such as bowing, flared metaphyses, and "flattening" of longbone shafts, can be a result of nutritional deficiency, infectious process, or biomechanical stress. These factors can work singly, or in combination, to produce various forms of shape abnormalities. For instance, vitamin D deficiency (rickets) creates a physiological environment in which the absorption of calcium into bone matrix is inhibited. This failure leads to a state where the structural integrity of the cortical bone is weakened, and the biomechanical stress of load bearing can cause bowing of the long bones. Symmetry of pre-mortem long-bone abnormal shape could not be assessed due to the unequal representation of long bones for most individuals.

There were 40 individuals (83 percent) of the population subsample that were diagnosed with some form of premortem abnormal shape in one or multiple long bones. Twelve individuals (25 percent) were diagnosed with either platycnemia or platymeria (flattening of the tibial and femoral shafts, respectively).

Age		ening	Bowing			Flaring		
Age	n	Percent	n	Percent	n	Percent		
Total subsample	12	25.0	18	37.5	36	75.0		
0 < 6 years	1	3.3	9	30.0	25	83.0		
6 < 16 years	5	50.0	6	60.0	7	70.0		
16 < 25 years	6	75.0	3	37.5	4	50.0		
Males	3	100.0	1	33.3	2	66.7		
Females	3	60.0	2	40.0	2	40.0		
Indeterminate	6	15.0	15	37.5	32	80.0		

Table 90. Distribution of Abnormal Long-Bone Shape in the Total NYABG Population Subsample, by Age and Sex

Eighteen (37.5 percent) were also diagnosed with bowing of one or more long-bone shafts, and 36 (75 percent) individuals were diagnosed with flaring of the metaphyses of one or more long bones. Table 90 indicates the distribution of these pathologies for the total population subsample by age and by sex.

Potential relationships between shape abnormality and anemia, infection, and growth status were statistically tested using chi-square analyses. The results of these tests indicate that there is no relationship between long-bone shape abnormalities and anemia or δl_{mean} grouping values. The only significant association was between bowing and infection in children, from newborn to less than 6 years (n = 30; p = .003, < .05).

As was noted above, these morphological variables bridge the three categories of pathologies being analyzed in this chapter. The following section will proceed with an analysis of biomechanical stress indicators in an attempt to more fully elucidate the complex relationships between these factors.

Biomechanical Stress Indicators

Indicators of biomechanical stress can manifest themselves skeletally in a variety of ways. One is the absolute change in morphology of a skeletal element, as was mentioned above. Many biomechanical stress indicators are generally "built" over time and are often the result of interactions between load bearing and/or repetitive motion and other factors affecting bone metabolism. In some instances, the factor affecting bone metabolism is the natural process of metabolic slowdown related to aging. This is often the case with

age-related osteoarthritis—years of "living and doing" manifest as symptoms of arthritis in increasing frequency as individuals age. Arthritis in younger adults and children may be a result of a variety of disorders such as juvenile rheumatoid arthritis and its related autoimmune disorder, lupus. Yet, osteoarthritis may also be a result of intense or increased physical activity (load bearing and repetitive actions) at points in the life span when bone (and cartilage) is undergoing rapid rates of remodeling due to growth cycles.

Intensified or increased physical activities can also leave their mark by accentuating points of muscle insertions or origins on bone (hypertrophies). These tend to be the result of long-term biomechanical stress on those areas. However, acute events of intense physical activity can result in the avulsion of bone at the site of muscle and ligature insertions (enthesopathy and arthropathy, respectively). Fractures are another class of acute events related to biomechanical stress. Whether a fracture is the result of purposeful or inadvertent action, the result of the action is that the bone is subject to a biomechanical force that exceeds its capacity to maintain structural integrity.

With this in mind, the New York African Burial Ground pathology database was probed for cases of biomechanical indicators of stress in long bones, specifically looking for occurrences of fractures, arthritis, enthesopathy/arthropathy, and hypertrophy in individuals under the age of 25 years. It should be noted that project osteologists paid close attention to discerning the differences between bone irregularities resulting from normal growth processes and those directly attributable to acute and/or chronic biomechanical stressors.

Table 91. Distribution of Individuals with Biomechanical Stress Indicators by Age and Sex in the NYABG Population Subsample

Burial	Age Range (yrs)	Fracture	Arthritis	Hypertrophy	Enthesopathy
Male					
96	16.0–18.0			X	
427	16.0–20.0			X	X
343	19.0–23.0		X	X	X
Female					
205	18.0–20.0	X	X	X	X
259	17.0–19.0	X	X	X	X
122	18.0–20.0		X	X	X
383	14.0–18.0			X	X
Indeterminate					
58	3.5–5.5			X	
138	3.0-5.0			X	
219	4.0-5.0				X
39	5.0-7.0			X	X
244	5.0-9.0			X	X
396	6.5–8.5			X	
95	7.0–12.0			X	X
405	6.0–10.0			X	
180	11.0–13.0	X	X	X	
368	10.5–13.5			X	
25	20.0–24.0	X	X	X	
253	13.0–15.0	X		X	X
Total no. of individuals (n)	19	5	6	18	11

A total of 19 people (39.5 percent) in the population subsample were diagnosed with these biomechanical stress indicators. Table 91 provides a summary of all individuals who were represented by at least one occurrence of any of these four biomechanical stress indicators. An X in a column designates the presence of at least one site of a specific indicator, although many individuals were diagnosed as having multiple sites of biomechanical stress. This table indicates that 5 (26.3 percent) of the 19 individuals were diagnosed with fractures. Approximately 42 percent of the population subsample, 8 out of 19, was diagnosed as having arthritis, and 16 (84.2 percent) and 11 (57.9 percent) individuals were recorded as having hypertrophies or

enthesopathies, respectively. What is striking about these frequencies of biomechanical stress indicators is that 12 children (63.2 percent) under the age of 16 years had been diagnosed with fractures, arthritis, hypertrophies, or enthesopathies. Also, 8 of these children were between the ages of 4 and 10 years. The co-occurrence of hypertrophic attachments and enthesopathy was more prevalent in females (100 percent, n = 4), whereas males had a 66.7 percent (n = 2) co-occurrence, followed by indeterminate individuals with a co-occurrence of 33.3 percent (n = 4).

Statistical tests of observable relationships (Table 92) between the three indicators of biomechanical stress were made. Because of the small subsample size

Chi-Square Test	Chi-Square Value	p
Arthritis by hypertrophy	15.157	.0001
Arthritis by enthesopathy	19.899	.0001
Hypertrophy by enthesopathy	19.475	.0001

Table 92. Results of Chi-Square Tests of Relationships between Biomechanical Stressors

for fractures, they were not included in this analysis or any of the following analyses. The results of Fisher's Exact chi-square analyses provided in Table 92 demonstrate significant relationships in the pattern of co-occurrence of these variables (n = 48; p < .05). Statistical analysis of these biomechanical stress indicators in relation to growth status, PH, generalized infectious lesions, and abnormal shape variables were also tested. The statistically significant relationships for the total population subsample (n = 48) were between: hypertrophy and long-bone flattening ($\chi^2 = 9.341$, p = .004); arthritis and longbone flattening ($\chi^2 = 13.642, p = .001$); enthesopathy and long-bone flattening ($\chi^2 = 11.361$, p = .002); hypertrophy and bowing ($\chi^2 = 4.713$, p = .033); and enthesopathy and bowing ($\chi^2 = 4.159$, p = .047). Among individuals of indeterminate sex, statistically significant relationships were also found among a small set of variables. These relationships were: hypertrophy and long-bone flattening ($\chi^2 = 6.536$, p = .026) and hypertrophy and long-bone bowing ($\chi^2 = 6.009$, p = .020). When considering the relationships between these variables by age grade, only stature ranking (percentile) and enthesopathy ($\chi^2 = 9.000, p = .011$) in children between 6 and 16 years of age, and δl_{mean} and enthesopathy ($\chi^2 = 8.000$, p = .018) in subadults/young adults between 16 and 25 years exhibited statistically significant results. The overall relationships among long-bone flattening and arthritis, hypertrophy, and enthesopathy may indicate that this particular form of abnormal bone shape was more likely to result from biomechanical stress rather than nutritional insufficiency. Additionally, the relationship between enthesopathy and δl_{mean} values and stature ranking in children over the age of 6 years is a strong indicator that childhood labor was impinging upon long-bone growth.

Craniosynostosis

The presence of craniosynostosis was observed in 15 individuals of the 48 individuals under the age of

25 years (31.3 percent) that comprised the subsample for analysis in this chapter. The suture(s) involved, sex, and age of each of these individuals are provided in Table 93. As can be seen in this table, 12 of the individuals (80 percent) were 6 years of age or older. When considering the prevalence of craniosynostosis in relation to growth, infection, nutrition, and biomechanical indicators, several evocative relationships were revealed. Table 94 provides only the statistically significant results between these variables and craniosynostosis. When these results are reviewed, one must remember that all individuals of indeterminate sex in the population subsample are under the age of 16 years. Several significant relationships (p < 0.05) exist between craniosynostosis and infectious, nutritional, and biomechanical indicators at the level of the total population subsample. However, the relationships observable among a large segment of the youngest members of this subsample indicate that, minimally, the presence of craniosynostosis in any given individual can be exacerbated by chronic or acute exposure to biomechanical, nutritional, and/or infectious stressors. In particular, nutritional and biomechanical stressors may accelerate or even cause the expression of this particular developmental pathology.

Discussion

Analyses of standardized long-bone measures and stature estimates of the New York African Burial Ground sample demonstrate that environmental stressors impacted overall growth. Goode et al. (1993) proposed that standardizing measures of long-bone length would facilitate intra- and interpopulation comparisons of growth and health. Within this population subsample, neither nutritional, generalized health, nor biomechanical indicators of environmental stressors were associated with low δl_{mean} values presented in Table 83. Sciulli (1994) has published the only comparable data for five Native American populations in the Ohio River Valley (3000–300 B.P.). Table 95 compares the values calculated for the New York African

Table 93. Individuals with Craniosynostosis by Suture(s)

	4		'	7:773	4	7:07				ţ	S S S S S S S S S S S S S S S S S S S	9	
Burial	Age Kange (yrs)	Corona	= a	Sagittal	Lambdoid	piopi	_	<u>م</u>	-	_ ~	ļ	<u>_</u>	Sutures
		1	:		1	:		:		:		:	
Males													
427	16.0-20.0			X									1
96	16.0-18.0			X	X	X							3
343	19.0–23.0						X						1
Females													
122	18.0–20.0	X	X	X							X	X	5
383	14.0–18.0	X	X	X									3
Indeterminate													
91	0.67–1.3			X									1
252	1.0-2.0			X	X								2
58	3.5–5.5		X					X					2
39	5.0-7.0		X	X	X			X					4
95	7.0–12.0			X				×					2
405	6.0-10.0			X	X								2
35	8.0-10.0		X	X	X	X				X			5
180	11.0-13.0			X	X	X							3
368	10.5–13.5							X					1
253	13.0–15.0	X					X						2
Total no. of individuals (n)	15	3	5	111	9	3	2	4		1	1	-	37

Key: S = spheno; F = frontal; T = temporal; P = parietal.

Table 94. Chi-Square Test Results for Relationship between Craniosynostosis and Biomechanical, Nutritional, and Infectious Indicators

Chi-Square Test	Chi-Square Value	р
Total population subsample ($n = 48$; power = 0.9337)		
Craniosynostosis by arthritis	8.828	.006
Craniosynostosis by hypertrophy	12.738	.001
Craniosynostosis by enthesopathy	6.967	.013
Craniosynostosis by flattening	14.255	.0001
Craniosynostosis by bowing	11.953	.001
Craniosynostosis by infection	3.948	.046
Age group 0 <6 years (n = 30; power = 0.7819)	<u> </u>	
Craniosynostosis by bowing	7.778	.021
Sex indeterminate (n = 40 ; power = 0.8854)	<u> </u>	
Craniosynostosis by hypertrophy	14.400	.001
Craniosynostosis by arthritis	5.926	.042
Craniosynostosis by flattening	6.536	.026
Craniosynostosis by bowing	10.276	.002

Table 95. A Comparison of NYABG δI_i and δI_{mean} Values with Those of Five Native American Populations (Sciulli 1994)

	δl _i					δ I mean	
	Humerus	Radius	Ulna	Femur	Tibia	Fibula	∪imean
NYABG (18th century)	0.95	1.04	0.93	0.93	0.90	0.90	0.94
n	34	17	20	31	14	3	50
Archaic (3,000 years B.P.)	0.92	0.94	0.91	0.88	0.92	0.89	0.90
n	24	15	15	24	16	7	32
Pearson (850 years B.P.)	0.93	1.00	0.98	0.90	0.98	0.96	0.93
n	26	19	20	45	38	23	59
Sunwatch (800 years B.P.)	0.87	0.87	0.87	0.82	0.86	0.85	0.86
n	63	58	55	57	54	48	77
Monongahela (600 years B.P.)	0.89	0.91	0.92	0.85	0.87	0.87	0.89
n	43	39	32	43	38	24	61
Buffalo (300 years B.P.)	0.87	0.86	0.90	0.84	0.85	0.85	0.88
n	28	22	19	35	25	10	43

NYABG and Steckel 185 170 155 Δ 140 Δ 125 Stature/cm 110 Δ 95 80 65 50 35 20 5 10 15 20 25 30 Age/years **NYABG Males** Steckel Males-Male 50%

Comparison of Average Male Statures:

Figure 139. Comparison of average male statures: New York African Burial Ground and Steckel.

Burial Ground sample (n = 48) to those presented by Sciulli (1994). Although the samples compared in this table exhibit temporal heterogeneity, they all show the differential impact that δl_i have on δl_{mean} values. Also, all skeletal series illustrate that the long bones of the lower extremity, generally the femur, tend to have the lowest δl_i values within each population. Although there are considerable differences between δl_i values, patterns of long-bone growth are quite similar when subsample size is taken into consideration.

This finding demonstrates that the calculation of standardized long-bone measures may be quite useful, as Goode et al. (1993) predicted, for comparisons of growth when the goal is to assess variation that disease has on growth. As these authors noted, it is necessary to broaden the definition of disease within this context. Although Goode-Null (2002) promoted the inclusion of trauma, this study has included other biomechanical stress indicators that are more frequently associated with chronic or intense physical activity as a means of investigating labor-related activities of children.

The estimation and assessment of stature for the New York African Burial Ground sample indicate that most of young adults and children were falling well below the twenty-fifth percentile of the CDC/NCHS height for age standards. When the possible factors that may have influenced the overall poor growth status of these individuals are considered, none of the

variables representing nutritional status, generalized health status, or biomechanical stress proved to have a significant relationship with estimated stature for the population subsample. Another factor that must be considered is that error in age estimation of young individuals could have influenced the application of regression formulas. These factors could either overestimate or underestimate stature calculations depending upon which error was made. However, close examinations of dental aging scores did not demonstrate errors in the extrapolation of mean dental ages. Additionally, the age ranges for each of the juvenile regression equations are generally broad enough to capture minor errors in dental age estimation.

Steckel (1996) provided the only comparable data for enslaved individuals under age 25 years. Reporting on stature estimates taken from ship manifests supplying the antebellum South (1820–1860), he provided mean-stature calculations for enslaved males and females from 4.5 years of age through adulthood. A comparison of the New York African Burial Ground stature estimates and those reported by Steckel are provided in Figures 139 and 140 for males and females, respectively (Figure 141 provides a comparison of the New York African Burial Ground stature estimates for individuals of indeterminate sex and those reported by Steckel for males and females). It should be noted that the values at age 25 years in both figures actually

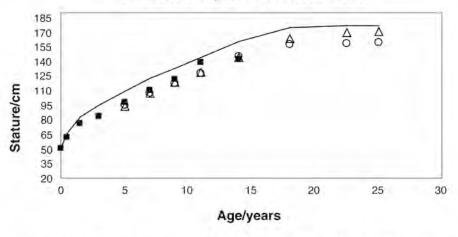
NYABG and Steckel 185 170 155 0 140 0 125 0 Stature/cm 110 95 80 65 50 35 20 0 20 25 5 10 15 30 Age/years

Comparison of Female Statures:

Figure 140. Comparison of average female statures: New York African Burial Ground and Steckel.

Steckel Females -- Female 50%

reflect adult stature estimates for both the New York African Burial Ground population and those individuals comprising Steckel's sample. This comparison indicates that there were no significant differences between the New York African Burial Ground and antebellum South samples of enslaved Africans and African Americans. The lack of significant differences between the two population samples suggests that (1) enslavement was equally detrimental to the health of individuals (as reflected by growth status) in the North and in the South, and (2) the regression formula used to estimate stature for the New York African Burial Ground juvenile remains provides an accurate reflection of the growth status of these individuals.


NYABG Females

Although growth status can stand alone as an indicator of population health and nutritional status, it is the result of a complex set of interactions among nutritional intake, disease processes, and energy expenditure during physical activity. Thus, the fact that the majority of independent nutritional and health indicators were not significantly correlated with growth status within the New York African Burial Ground subsample warrants further discussion. Nutritionally, minimally one-quarter of the sample had experienced an episode of anemia. Interestingly, of all lesions diagnosed and identified as PH, only one

individual, an approximately 8-month-old infant of indeterminate sex (Burial 64), had lesions coded as active only. All other individuals in the subsample had PH lesions noted as healed and were, therefore, not actively experiencing iron deficiency at the time of their death. This situation may explain why there was no correlation between the presence or absence of PH lesions and stature, percentile of growth ranking, or $\delta l_{\mbox{\tiny mean}}$. Those individuals who were in the New York African Burial Ground sample that had experienced an anemic episode had already recovered or had begun to recover their growth—they either had experienced or were experiencing a catch-up phase of growth at the time of their death. This possibility is not one that can be confirmed or rejected based on the data available from a cross-sectional view study.

The relationship between growth and generalized lesions makes quite apparent that more than half of these young people (52 percent) experienced bouts of chronic infection. However, there were no significant relationships between growth status and the rates of infectious lesions. Nor was there a significant relationship between rates of PH and generalized infectious lesions. This absence is contrary to Rankin-Hill's (1997) findings for the FABC population in Philadelphia where the co-occurrence of these two pathologies was significant at the p < .01 level. Again, this finding

Comparison of Statures: NYABG Indeterminate, Steckel Male, and Steckel Female

NYABG Indeterminate ○ Steckel Female △ Steckel Male—Male 50%

Figure 141. Comparison of statures: New York African Burial Ground indeterminate, Steckel male and Steckel female.

may result from the vast majority of PH lesions in the New York African Burial Ground sample being healed lesions in contrast to the 40 percent active rate for PH lesions in the FABC sample. This difference in the frequencies of active versus inactive PH lesions may actually address the issue of heterogeneous risk of death within and between populations by indicating differential levels of individual frailty, and this warrants future consideration.

Statistical tests of abnormal bone shape demonstrated no significant associations with PH in the total population subsample by age or by sex. However, bowing of the long bones did have statistically significant relationships with infection in children from birth to 6 years of age.

The results from the analysis of biomechanical stress indicators did not demonstrate any significant relationship with growth status. However, several thought-provoking patterns did emerge from this analysis. First, approximately 40 percent (n = 19) of the population subsample demonstrated some form of biomechanical stress—nearly all (n = 18) of the subset of the 19 individuals in this analysis exhibited at least one area of hypertrophic muscle attachment—whereas 12.5 percent and 22.9 percent had been diagnosed with arthritis and enthesopathies, respectively. In general, there were more females than males with biomechanical stress indicators. However, there were also eight children, biologically aged from 4 to 8 years, who

exhibited hypertrophic attachment—four of whom also had at least one enthesopathy and one who also had arthritis. Given the care that was taken to not inadvertently diagnose normal developmental features of the muscle attachment sites as hypertrophic, and given the co-occurrence of hypertrophy with arthritis and enthesopathies, these individuals are a clear example that enslaved children in New York City engaged in strenuous physical activities.

Chi-square tests for associations between these biomechanical stress indicators and abnormal bone shape in the total population subsample (Table 96) revealed that flattening was related to all three biomechanical variables. This analysis supports a conclusion that long-bone shaft flattening should be considered another indicator of biomechanical stress, even in young individuals (n = 12). Flattening of the long bones was also associated with hypertrophies ($\chi^2 = 6.536$, p = .026) in indeterminate individuals as was bowing and hypertrophies ($\chi^2 = 6.009$, p = .020). Biomechanical stress indicators were not related to the occurrence of PH lesions in the total population subsample, by age or by sex.

Conclusion

The analysis of growth and development presented above does not provide a clear picture of cause and

Table 96. Results of Chi-Square Tests of Relationships between Biomechanical Stressors and Abnormal Flattening of Long Bones

Chi-Square Test	Chi-Square Value	р
Hypertrophy by flattening	9.341	.004
Arthritis by flattening	13.642	.001
Enthesopathy by flattening	11.361	.002

effect in relation to growth status. This chapter used bivariate statistical analyses to affirm that the relationships between disease, nutrition, biomechanics, and the underlying genetics and biology of growth and development are complex.

However, this bivariate analysis does allow a few general conclusions:

- 1. Indicators of growth status, particularly stature rankings, clearly indicate a population that was not reaching its growth potential. Given that growth status is often used as a proxy for overall population health, it is not injudicious to put forth that the overall health status of the New York African Burial Ground population was poor.
- 2. Evidence of biomechanical stressors in individuals as young as 4 years indicates that children were

- participating in strenuous activities. Given that this population is known to be composed of enslaved Africans and African Americans and supported by historical documentation (see Franklin 1967; Kruger 1985), it is more likely that these youngsters were engaged as laborers.
- 3. Relationships observed between the presence of craniosynostosis, nutrition, biomechanics, and infection indicate that development was affected negatively by its social milieu. This point is of particular concern, as impairments in developmental processes may have long-term effects on the reproductive and productive capabilities of individuals within any population.

CHAPTER 13

The Political Economy of Forced Migration: Sex Ratios, Mortality, Population Growth, and Fertility among Africans in Colonial New York

M. L. Blakey, L. M. Rankin-Hill, J. E. Howson, S. D. Wilson, and S. H. H. Carrington

The number of Africans imported into the New York colony between 1700 and the eve of the Revolutionary War has been estimated to range between 6,800 and 7,400. The higher estimates are based on undercounting of captives due to smuggling from New Jersey, and possibly other states, to avoid tariffs. According to Lydon (1978:382–383), the minimum estimate, based on extant records for the eighteenth century, includes approximately 2,800 people, or 41 percent, brought directly from Africa and 4,000 from the Caribbean (and less significantly the southern colonies).

Perhaps one-fifth to one-quarter of those disembarked in the New York port remained within the city (Lydon 1978), with many of these individuals living there for the rest of their lives and eventually being buried in the African Burial Ground. Some gained legal freedom, gradually building a free African population, but most died enslaved.

A major research focus of the New York African Burial Ground Project has been the relationship between the political economy of slavery in the urban north and the demography and health of the captive people. This focus included how the routing of captives to New York and the specific character of the market for forced labor in the colonial city affected the demographic patterns reported earlier in Chapter 7. Therefore, the research objectives were to identify (1) the nature of the political economic regime in place during the period the African Burial Ground was in use, (2) how the priorities and demands of the regime were regulated and perpetuated, (3) the factors that may have affected the implementation of the political economic system, and (4) how the

regime impacted the lives of enslaved Africans as can be observed demographically. The basic premise is that although demographic assessment is fundamentally biological in nature (providing a window into the adaptation, health status, and survivability of a population), demography is equally reflective of the social conditions in which individuals are embedded and upon which they are physiologically dependent.

Sources for the analyses presented in this chapter include the demographic assessment from Chapter 7; historical, archival, and medical historical research undertaken by the historians, archaeologists, and public education and information office research specialists; and the skeletal biological evidence assessed by the physical anthropologists.

Pervasive in many historical studies of African Americans is the concept that somehow slavery in the New World stands as an isolated historical deviation of which the Western world should be ashamed, apologize for, rationalize and/or study as a separate phenomenon. Others have studied American slavery from a more universal context, as Williams (1961:4) has contended:

Slavery was an economic institution of the first importance. It had been the basis of Greek economy and had built the Roman Empire. In modern times it provided the sugar for the tea and the coffee cups of the Western World.... It produced the cotton to serve as a base for modern capitalism.... Seen in historical perspective, it forms a part of that general picture of the harsh treatment of the underprivileged classes, the unsympathetic

poor laws and severe feudal laws, and the indifference . . . [of] the rising capitalist class.

Thus, enslaved Africans were placed into a system that was already formulated and transforming. In the English colonies, Africans were legally and in practice treated as indentured servants until the legislation of the 1660s. One generation later a unique form of racial, chattel slavery would distinguish the plight of African labor in America from feudal and ancient forms of human bondage (Smedley 1993). Williams (1971:14) maintained in his controversial work, *Capitalism and Slavery*, that the origin of Negro slavery

was economic not racial; it had to do not with the color of the laborer, but the cheapness of labor.... The features of the man, his hair, color, and dentition, his "subhuman" characteristics so widely pleaded, were only the later rationalizations to justify a simple economic fact: that the colonies needed labor and resorted to Negro labor because it was cheapest and best.

Southern plantation slavery was and continues to be the central focus of the majority of historical studies. The themes discussed earlier were essentially explored within the context of New World slavery as separate and distinct sociohistorical phenomena based on racism and hatred. Much of the debate concerning slavery can be described as two polarized approaches to antebellum American history: that of social historians versus that of economic historians.

Moreover, despite the voluminous anthropological, historical, and sociological literature on the topic of slavery, several areas of research still have been ignored. These include such topics as (1) the heterogeneous nature of western hemisphere African American communities because of diverse African provenience and admixture with diverse Europeans and/or Native Americans; (2) the experience of urban enslaved African Americans and freedmen during the colonial and antebellum periods; (3) the living conditions, health status, and life styles of Africans and African Americans who were enslaved or free; (4) changing sociocultural conditions (e.g., industrialization) and their impact on African American conditions; and (5) the health status and biological adaptability or resilience of African Americans under very stressful conditions. In addition, multidisciplinary, integrative research approaches to the study of African Diasporic populations in the Americas have rarely been undertaken.

The economic, political, and sociocultural characteristics of the trade in human captives will be consid-

ered in this chapter. Those characteristic structures and processes are reflected in the criteria for determining the sex and age of the enslaved who would best fulfill the needs of the Dutch, English, and Euroamerican New York population, which could be characteristic of colonial New York, as well as the needs, perceptions, and/or priorities of those engaged in the buying and selling of human cargo.

The Trade in African Captives

Data on the trade in captives for colonial New York are available from shipping records, which provide information on the place and timing of the trade, from newspaper advertisements, and from both private and official correspondence, which indicate some of the parameters of local demand. Although a number of cargoes direct from Africa came into New York in the seventeenth century, imports from the West Indies were much more important in the eighteenth century, up to the 1740s. After 1741, the trade shifted to an emphasis on direct imports from the African continent rather than from the West Indies (see Foote 1991; Kruger 1985; Lydon 1978).

We suggest that the age-sex structure and ultimately the sex ratio of colonial Africans among New York City's African population was linked to changes in the port's trade in captives, specifically because of changing and intentional selection criteria and the differences between African and West Indian cargoes. It is important to recognize that most captives from the West Indies were African born and had spent as little as a few weeks to several years of "seasoning" in the Caribbean (see Mullin 1995).

Intermittent periods of direct African trading and importation occurred in 1705, 1710–1712, 1715– 1717 and 1721 (Brodhead 1853–1887:5:814; Lydon 1978:377). The late 1720s and 1730s brought the largest cargoes of enslaved Africans from the West Indies. In 1763, large shipments of enslaved Africans were brought in from the continent. And there were several factors driving the structure of the trade. The especially sharp (and permanent) decline in imports from the West Indies were in most likelihood a reaction to the New York "slave uprisings" of 1712 and 1741, followed by the subsequent conspiracy trials of 1742. These were a catalyst for the redirection to African importation. This redirection was based on a general impression that West Indian consignments often contained individuals who were potentially threatening to the stability of the slaveholding colony. Indeed, Akan-led Maroons defeated the British to establish treaty-protected territories in Jamaica in 1739 after years of warfare (Agorsah 1994).

Most slaveholdings in colonial New York County were quite small (one, two or three persons). Households that included enslaved Africans usually had at least one female domestic. Despite its early agrarian nature (small farmsteads), enslaved Africans were also used as dock laborers, construction workers, skilled craftsmen, and domestics. Historians have suggested that the New York market shifted from one largely concerned with agricultural and dock labor in the seventeenth and early eighteenth centuries to one, in the mid-eighteenth century, which also was driven by the need for domestic servants, best obtained while quite young. Cadwallader Colden, for example, wrote to a correspondent requesting to purchase a "Negro girl about 13 years old" for his wife, to keep the children and sew, and two young men about 18 years old, strong and well made for labor (Colden 1918–1937:1:51). Girls were considered to be ready for productive domestic work in urban households at younger ages than boys, who were more likely to be needed for physical labor. Thus, this early "urbanization" established the need for age and sex selection in the slave trade for the local market place. New York merchants, well aware of the local market, then initiated a preferential system whereby African cargoes were more likely to include youths, especially girls, than were West Indian shipments.

Age Selection

The youth of new imports appears to have been a selling point in the slave market of New York City. Jacobus Van Cortlandt wrote in 1698 that the New York market was for Negroes aged 15–20 (cited in Foote 1991:82). It appears from historical accounts and documents that shipments from the continent contained young girls in particular, who then remained in the city because they were in demand as domestics in a typically characteristic urban market. Men and adolescent boys, although in demand as laborers in the port town, were also more in demand in the nearby agricultural areas. It is important to note that selection criteria, preferences, and regulations were reinforced and institutionalized through laws and tariffs.

Africans from the continent who were more than 4 years of age were subject to an import tax as of 1732 (New York State 1894). Presumably, any younger children who somehow were included in cargoes

were not taxed because of their high risk of dying and low potential for immediate productivity, whereas older ones were considered valuable commodities. Overall, it appears that enslaved Africans were put to work by their preteen years. This was certainly the case for domestic workers; males in their late teens would have been put to work at the most demanding types of physical labor on the docks, in construction, hauling, etc.

In addition, there was a selection bias against older enslaved men and women. Apparently, they were considered a burden by slave owners. They were valued at lower rates for tariff and tax purposes, with age 50 generally used as a cutoff. Colonial laws also reflect anticipated problems with owners of elderly Africans. In 1773, (New York State 1894:5:533) An Act to prevent aged and decrepit slaves from becoming burthensome within this Colony, was passed by the provincial Assembly. The act cited "repeated instances in which the owners of slaves have obliged them after they are grown aged and decrepit," to go about begging for "victuals, cloths, or other necessaries" as well as owners who by "collusive bargains, have pretended to transfer the property of such slaves to persons not able to maintain them, from which the like evil consequences have followed." The penalty imposed was £10 for allowing a slave to beg for necessities, and £20 for each enslaved individual sold to a person who could not support them (and the sale was voided). In 1785, a certificate from the overseer of the poor was needed to free an enslaved person; slaveholders could only obtain the certificate for persons under age 50.

Sex Selection and the Sex Ratio

The local necessity for young women, or those in their early teens, to be the primary choice for urban domestic household enslavement is corroborated in the New York Census data (Table 97). The 1746 census indicates a sharp increase in girls over boys (in the under 16 years of age category). Corresponding to this is an inflated adult sex ratio for the year because there were fewer women than men because so many of the females were too young to be counted as adults (Table 98). Three years later, the sex ratio declined abruptly as girls reached ages 16–18. These fluctuating values for the 1740s most probably represent the influence of an influx of new captives, rather than a natural population increase.

Throughout the eighteenth century, sex ratios tended to indicate an excess of females or equal numbers of

Table 97. African Population by Age and Sex, Eighteenth-Century Censuses

Year	Ad	lults	Chil	dren	Age	Label in	Notes
i cai	Male	Female	Male	Female	Cut-Off	Census	Notes
1703	298	276	124	101	≤16	negroes	
1712	321	320	155	179	≤16	slaves	
1723	408	476	220	258	not given	negroes and other slaves	presumed 16
1731	599	607	186	185	≤10	blacks	
1737	674	609	229	207	≤10	black	
1746	721	569	419	735	≤16	black	black adult males includes 76 males over 60
1749	651	701	460	556	≤16	black	black adult males includes 41 males over 60
1756	672	695	468	443	≤16	black	black adult males includes 68 males over 60
1771	932	1085	568	552	≤16	black	black adult males includes 42 males over 60
1786	896	1207				slaves, negroes	

Note: From United States Bureau of the Census (1909), checked against Brodhead (1856–1887). Some discrepancies in the numbers appearing in Kruger (1985) and Foote (1991) have been corrected.

both sexes. A substantially greater number of males are reported only for 1737 (see Tables 97 and 98 and Tables 18 and 19). The proportion of males (but not their absolute numbers) decreased most markedly following the 1712 African rebellion, the alleged 1741 African rebellion, and the American Revolutionary War that entailed massive African allegiance to and departure with the British. (See Medford [2009] for a discussion of the events of 1712 and 1741.)

During the first two historic events, the relative excess of females occurred for adults and may either reflect the increased importation of females or sale and exportation of men to areas beyond the city. The substantially larger number of girls, during the 1740s, indicates the effects of high importation of African girls into New York City and/or sale of boys to areas outside of the city. Lydon (1978), Kruger (1985), and Foote (1991) have suggested that the English reaction to the alleged 1741 African uprising in New York caused this reduction in the relative (but increase in the absolute) number of African males who were imported during

this period. It does seem odd, however, that the absolute number of boys nearly doubled between 1737 and 1746, if fear of rebellious males had actually brought about the skewed sex ratio. On the other hand, boys could be indoctrinated into not becoming dangerous men. Women and older children were preferred for importation during this period, as were direct African imports, as means of limiting the militant resistance of enslaved people (Foote 1991; Kruger 1985; Lydon 1978). Demands elsewhere in the international trade might also have had a negative impact on the availability of men for sale in New York. The sex ratio shifted steadily downward (a proportional increase in females) between 1703 and 1723, with a noticeable drop in the proportion of men to women appearing in the 1723 census. It is also the case that between the census years 1756 and 1771, the sex ratio went from 96.7 to 85.9. Conversely, the sex ratio began to climb (a proportional increase in males) during the years that saw the heaviest importation from the West Indies (the late 1720s and 1730s) (Figure 142).

Table 98. African Adult Sex Ratio, New York County, 1703-1771

Year	Sex Ratio
1703	107.9
1712	100.3
1723	85.7
1731 ^a	98.7 ^a
1737 ⁸	110.7 ⁸
1746	126.7
1749	92.9
1756	96.7
1771	85.9

Source: From United States Bureau of the Census (1909). Discrepancies were found in Foote's (1991) and Kruger's (1985) numbers and have been corrected. The numbers in United States Bureau of the Census (1909) were checked in checked against Brodhead (1856–1887).

Note: The 1786 state census and the 1790, 1800, and 1810 federal censuses do not count blacks by sex. According to Kruger (1985:370), local censuses for the early 19th century indicate ratios declining from 72.3 in 1805 to 65.8 in 1819.

^a In 1731 and 1737, the censuses counted persons over or under 10 years of age; thus "adults" were not all of child-bearing years. The overall sex ratio for these years was 99.1 for 1731 and 110.6 for 1737.

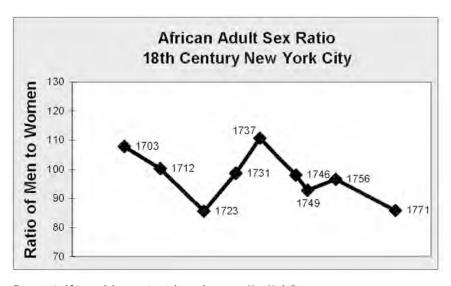


Figure 142. African adult sex ratio: eighteenth-century New York City.

Most historians have pointed to the low overall sex ratio for Africans in New York as a typical pattern for urban slavery. Yet, the significant fluctuation observed in the sex ratio appears to be highly associated with political upheaval and subsequent attempts at social and legal controls that preserved the institution of enslavement for reasons of economic stability. In addition, one must also take into consideration the intensity of biological risk factors that included workload, health, and nutritional status and the mortality regime associated with environmental conditions encountered by the population.

Mortality

Mortality for the seventeenth and eighteenth centuries in America was high, especially in cities. New York experienced very similar health and disease patterns as other colonial American urban centers, in particular port cities such as Philadelphia. The impact of periodic epidemics had a differential effect on populations based on their health status and risk factors (Nash 1988).

Contemporary observers believed that black mortality throughout the northern colonies, especially among infants, was so high that only importations could prevent the black population from gradually dying off (Anthony Benezet, writing in 1773, cited in Nash [1988:33]; Nash also cited Benjamin Franklin in 1751 and a Bostonian chronicler in 1775). Bills of mortality for Philadelphia in the period 1767-1775 indicate an average of 75 burials of Africans per year; this represented about 7 burials for every 100 blacks per year, a rate about 50 percent higher than among whites (Nash 1988:34). If a similar death rate were applied to New York, about 219 individuals would have been buried per year in the same period (based on the 1771 census count of 3,137 blacks). In each of these circumstances there was an undercount of Africans, so mortality rates were actually higher. The Philadelphia rates are more reliable than New York because of the Abolition Society's active role in documenting the accomplishments and conditions of "people of colour" in that city (Rankin-Hill 1997).

Environmental and living conditions during the colonial period tended to be unhealthy; there were problems of poor sanitation, indoor pollution (e.g., coal fires), impotable water, and crowded dwellings. For captives, the conditions were most insalubrious leading to high rates of morbidity and mortality (Curry 1981; Rankin-Hill 1997). In addition, American cities throughout the seventeenth, eighteenth, and nineteenth centuries were hot zones for epidemics, providing perfect conditions for pathogens to thrive.

Outbreaks of smallpox, yellow fever, measles, diphtheria, influenza, and other unspecified fevers in colonial New York have been documented from historical sources. Smallpox was the greatest single epidemic killer during the period of the African Burial Ground's use (Duffy 1968:34–35). Smallpox outbreaks occurred in 1702, 1731, 1745–1747, and 1752. It is likely that smallpox accounted for a significant portion of the death toll, appearing as a fatal childhood

disease rather than as an epidemic between 1756 and 1767 (Duffy 1968:53–58).

An examination of the deaths reported in the 1731 smallpox epidemic indicated that both European and African New Yorkers suffered considerable losses. The 1731 bills of mortality are actually numbers of persons buried at the city's church cemeteries, tallied by denomination. The number of "Blacks" buried is listed but with no church denomination. This indicates that burials at the African Burial Ground were being counted in some form. It is not known how or by whom. During the period of smallpox reporting, 477 Europeans (6.77 percent of their population) and 71 Africans (4.50 percent of their population) died. The overall death toll for August to December of 1731 was 7 percent of Europeans and 5 percent of Africans. This difference in frequency may indicate an underreporting of black burials, which is not surprising since historical accounts imply that the burial ground was most often used without direct observation by Euroamericans. As noted earlier, Philadelphia records indicated an average death rate of 7 percent per year among blacks in the 1767-1775 period, with a rate of about 5 percent for whites—a similar differential probably characterized general mortality in New York.

Although African deaths may have been underreported, another possible basis for a lower African death rate was the existence of a smallpox inoculation. Reportedly, some African societies practiced inoculation and a "Guaramantese" (or Akan man), who had been given the name "Onesimus," taught the technique to a Boston clergyman who, in turn, shared it with physicians in Boston and London (quoted material from letter by Cotton Mather dated July 12, 1716 [Koo 2007]). One of these physicians, Zabdiel Boylston, apparently used the technique in time to have helped reduce the impact of a Boston epidemic in 1721–1722 (Cobb 1981:1199-1200). Smallpox inoculation was controversial among the English (see Medford 2009), who feared the practice could spread the disease and prolong its presence, and many English colonials in the city were hesitant to allow inoculation of their slaves, fearful of negative outcomes. Nevertheless, if Africans in America were familiar with the practice of inoculation, it is not unlikely that inoculation may have been practiced by some in the New York black community, with or without the knowledge of slaveholders. The fact that many African New Yorkers had survived smallpox in their youth (whether in Africa, in the West Indies, or in the city) is attested to by the

Table 99. Population of New York County, 1698–1800 by Race

Year	Total	Black	White	Percent Black
1698	4,937	700	4,237	14.2
1703 [®]	4,391	799	3,592	18.2
1712	5,861	975	4,886	16.6
1723	7,248	1,362	5,886	18.8
1731	8,622	1,577	7,045	18.3
1737	10,664	1,719	8,945	16.1
1746	11,717	2,444	9,273	20.9
1749	13,294	2,368	10,926	17.8
1756	13,046	2,278	10,768	17.5
1771	21,863	3,137	18,726	14.3
1786	23,614	2,107	21,507	8.9
1790	31,225	3,092 ^b	28,133	9.9
1800	57,663	5,867 [©]	51,796	10.2

Note: From Foote (1991:78) and White (1991:26), except 1703. Both Foote and White have corrected the raw figures. See also Kruger (1985:131), though there are some discrepancies in the percentages for 1786, 1790, and 1800.

frequent citing of smallpox scarring in descriptions of runaways from the city and as a selling point in sale advertisements; such documents have been compiled for the period by the Office of Public Education and Interpretation of the New York African Burial Ground Project.

Endemic to the West Coast of Africa, yellow fever is caused by an infectious virus; therefore it is reasonably assumed that some of the Africans brought to the Americas had been exposed to the disease in their youth, thus acquiring some resistance. In New York, a 1702 epidemic killed hundreds of residents within just a few months (Duffy 1953:146); the Society for the Preservation of the Gospel's account of 570 deaths probably included all deaths rather than just yellow fever deaths. The provincial census for 1703 indicated a drop in the overall population of New York City that historians had long attributed to the yellow fever epidemic. The drop in the African population from 700 in 1698 to 630 in 1703 (Table 99) has also been interpreted as a result of yellow fever deaths (e.g., Goodfriend 1992:113). However, a tally of the African population of the city in 1703, based on the household-by-household count, puts the total number of Africans at 799 (United States Bureau of the Census 1909). Thus, it would appear that their mortality from the epidemic was lower than among Europeans. No ethnic breakdowns of the overall New York mortality figure of 217 were recorded for the 1743 yellow fever outbreak (Duffy 1968:86).

Other diseases, less widespread but also deadly, visited the town over the course of the seventeenth and eighteenth centuries. A number of outbreaks of unspecified diseases occurred in New York in the seventeenth century, which Duffy (1968:19, 34) suggested may have included smallpox, whooping cough, and malaria or typhoid. A few cases of measles were reported in 1713, and the disease appeared again in epidemic proportions in 1729 (Duffy 1968:58; Colden 1918–1937:1: 274, 280). Measles made a third appearance in the fall of 1788. Diphtheria, mentioned earlier as a major cause of children's deaths in 1745, reappeared in 1755 and late in the 1760s (Duffy 1968:59). Influenza was a killer in 1789–1790

^a From census of households in New York City (see below). These figures differ from those given in the 1703 census of the colony of New York, which listed only 630 blacks.

^b Includes 1,036 free and 2,056 enslaved blacks.

[©] Includes 3,333 free and 2,534 enslaved blacks.

(Duffy 1968:86). Both influenza and whooping cough (pertussis) ravaged European and African populations in the West Indies; as these diseases were considered more prevalent in colder climates, they may have been present in New York to a greater extent than the records suggest.

Parasitic loads were a common cause of anemia in enslaved communities in the Caribbean and may have also been a health risk in colonial New York. The most prevalent parasites were round worms (Ascaris lumbricoides), pork tapeworms (Taenia solium), Guinea worms (Dracunculus medinensis), and hookworm (Necator americanus). The Caribbean plantation environment, with poor sanitation, dirt floors, and chronic damp, was an ideal breeding ground for such organisms. Geophagy (consumption of dirt), often observed among Africans on West Indian plantations, was also frequently cited as the means by which worms were ingested. Infected West Indians brought as captives to New York would have carried their parasites with them. Incidence of infection in New York would have been much reduced because of the colder climate. Completed parasitological studies on a small number of soil samples from the pelvic area of skeletal remains from the New York African Burial Ground did not provide any evidence of parasites. Preservation factors may account for the complete lack of remains, as parasitic infections were not uncommon in colonial America.

New York African Burial Ground Mortality

The synthesis of the paleodemographic profile developed in Chapter 7 and the political economic and historical epidemiological scenarios discussed in the preceding section contextualize the experience of captive Africans in New York. The impact of the political economic regimes' selection processes, the intense physical labor, and disease environments of colonial New York can be assessed by the patterns observed in the New York African Burial Ground skeletal sample. These include:

- The low mean-age at death for the population of 22.3 is even lower than that of a Barbadian-plantation enslaved people (Handler and Lange 1978) under a regime of plantation sugar production. This points to the synergistic effect of political-economy, environment, and biological susceptibility.
- Subadults comprised 43.2 percent of the burial ground sample; a preponderance of subadult deaths

- (39.2 percent) occurred during the first year of life, especially during the first 6 months, followed by another 16.1 percent in the second year. Therefore, infants and children were at high risk of dying both in utero and for the first 2 years of their lives. Fifty-five percent of all the subadults died by age 2. Thus, the potential for population replacement was being severely compromised.
- The mortality pattern of adults was the highest in the 30–34 age group (15.8 percent). The second highest was the 45–49-year-olds (14.6 percent), followed by 15–19- and 20–24-year-olds (8.8 percent each), and 35–39-year-olds (8.4 percent).
- Adult mortality peaked in the fourth decade of life, when 28 percent of adults had died. This loss of adults indicates the reduction in potential reproductive members early in the life cycle and also corroborates the impact of captivity on the men and women interred in the African Burial Ground.
- Differential mortality patterns indicate that 62 percent of females had died by age 40, compared to 45 percent of the males. Although women and girls were being selected as domestic laborers, their lot was arduous and increased their risk of dying.
- The third highest adult mortality age group was composed of adolescents aged 15–19. Loss in this age group forebodes potential limitations on population reproductive and replacement rates. The high rates of males and females dying in the 15–24-year age group are also indicative of the high rates of forced migration to New York for Africans of those ages.
- Differential mortality patterns were observed in the 15–19 age group where 11.6 percent of girls died, compared to 6.9 percent of boys, although not statistically significant. Women were being removed from the population during a time when they were capable of reproducing or were biologically preparing for reproduction.
- The trends observed in the paleodemography of the New York African Burial Ground corroborate what has been learned about the conditions of captivity from historical, archival, and medical historical sources. These include patterns of differential mortality, especially for males and females at ages associated with adult work regimes and living conditions; forced migration; biological development selecting against the survival of women; and reduced fecundity that should have suppressed infant and childhood mortality rates.

Nineteenth-Century New York Trends

The data available on African mortality in New York in the period following termination of the use of the African Burial Ground are of some interest in assessing data from the burial ground, especially the sex ratio. The New York African Burial Ground skeletal records reveal a smaller proportion of females than the historical and demographic data on the living population. This observation, along with the trend toward higher risk of mortality at younger ages in males and in females over the age of 15 years, has led us to question the sex ratio among children. Are excess females among the dead girls? Because we are unable to determine the sex of subadults with available methods, we have turned to the burial records of related cemeteries. Spotty death records survive for the period between 1801 and 1815, when a new cemetery for Africans was opened on Christie Street in Manhattan, and the newly founded African Methodist Episcopal Zion Church began using its own cemetery. The adults (16 years and older) numbered 10 women and 15 men, approximating the skewed ratio found at the New York African Burial Ground. The preponderance of men at the later cemetery, as at the earlier one, is at odds with census data on the living African New York population, in which sex ratio declined steadily to a low of 61.4 in 1820. Sampling error aside (the records for the period are incomplete), the apparent discrepancy may be attributed to differential official reporting of burials based on sex.

Among the infants, girls in the Christie Street sample experienced slightly higher mortality from 0 to 2 years of age (nine girls and six boys). The excess of girls over boys in older age categories was more marked. In the 5–15-year-old group, there were seven girls and only one boy buried, but no deaths of young women (16–20 years old) were recorded.

Mortality data are also available for a later New York African community known as Seneca Village (1826–1851). In the first decade, which saw final emancipation in New York in 1827, the death records include 8 girls and 5 boys in the 0–2-year-old range, again, the same excess of girls seen in the earlier samples. Boys predominated slightly among older children reported from Seneca Village. By the second decade of the Seneca Village mortality data (1836–1846), recorded infant deaths include 12 girls and 16 boys. It is possible there was a lowering of female infant mortality over time with the ending of slavery in New York (These unpublished data for Seneca Village were

generously provided by N. Rothschild, D. Wahl, and E. Brown). The sample sizes, especially for the colonial period New York African Burial Ground, were too small to detect statistically valid differentials in child mortality. What this comparison indicates is a greater likelihood for a higher representation of female infants and children than of boys among the New York African Burial Ground remains. Questions of differential survival of the sexes will have to await chromosome analysis data for definite answers.

Population Growth and Fertility

Both paleodemographic and historical demographic analyses have limitations as to what can be inferred from the data. Paleodemography provides a means of evaluating the impact of environmental conditions on mortality patterns and health status. Historical records and analyses of vital statistics can provide insight into the period but are always biased based on the manner in which the information was recorded, reported, stored, and interpreted. Therefore, the data used from historical and osteological sources for fertility are proxy measures. Content analysis of historical sources, shipping records, censuses for the period, newspaper advertisements, and private and official correspondence provide a means of assessing and reconstructing some of the parameters of local demand and characteristics of the New York trade in human beings.

New York City municipal census data for the eighteenth century indicate the exceedingly slow growth in the city's African population. Population increase among Europeans was also slow but far more evident during the same period. The trends for New York County for 1698–1800 indicate that the African ("Black") population remained fairly low throughout; concurrently, importation of Africans from the continent and the West Indies continued with little impact on the overall population (see Table 98). The European population increased slowly early on, followed by significant growth starting at mid-century (see Table 99).

The pattern of little or no population increase in African populations early in enslavement was also observed in the lower western shore of Maryland (Menard 1975:32), South Carolina (Wood 1974), Virginia (Vaughn 1972; Wax 1973), and Philadelphia (Nash 1988). All of these populations shared the inability to reproduce themselves owing to deaths that exceeded births. In all locations except New York City

and some of the Caribbean islands, black population increases occurred later (Fraginals 1977). For example, regionally in the lower western shore of Maryland in 1658 there were 100 (Menard 1975:32) enslaved Africans, approximately 3 percent of the total population; by 1710, however, there were 3,500 enslaved Africans constituting 24 percent of the population, the result of importations, increased birth rate, and a slight decrease in mortality.

The question then is, why was there little or no growth in the enslaved African population with the ongoing importation of Africans to the port of New York? The historical accounts and demographic and paleopathological assessments provide significant explanatory evidence directly associated with the changing economic imperatives of that developing colony.

Sex Ratio and Mortality

As was reported earlier, the period was primarily characterized by a low sex ratio. The importation directly from Africa had the effect of shifting the sex ratio among New York City's enslaved population in favor of girls and women, whereas shipments of Africans from the West Indies shifted the ratio in favor of males. The former shift is associated with the aftermath of, and English responses to, African rebellions. Because of the changing needs of the growing urban households, girls were considered to be ready for productive domestic work in urban households at younger ages than boys, ultimately increasing the demand for females (see Figure 142). Therefore, the high numbers of females and adolescent girls with the potential to reproduce, at minimum should have led to a natural increase in the African population.

Juxtaposed is the effect of high mortality with differential patterns selecting against infants and toddlers, women and adolescent girls and boys. This establishes a synergistic effect that eliminates segments of the population that are the procreators and the progeny of those that managed to reproduce.

Fertility

Kruger (1985:403–420) has made the most ambitious attempt to analyze the meager data available pertaining to childbearing and fertility in New York's enslaved African population.

Almost no data are available on African women's ages when their children were born. In 1796, an indi-

vidual named "Africanus" proposed emancipation of all enslaved females born after 1796 at age 17, along with all their children. He estimated that three-fifths of them would already have borne children at that age (*Daily Advertiser*, January 26, cited in Kruger 1985:405). Therefore, African young women were reproducing prior to age 17. Kruger (1985:410–412) calculated median birth spacing at 28 months and inferred that during the period of 1799–1826 breast-feeding appeared to have continued for 16–18 months after birth. Therefore, women were potentially capable of producing four to six offspring between the ages of 15 and 30.

Child-To-Woman Ratios

Despite the potential for population growth, the low child-to-woman ratios (a proxy for direct fertility data) derived from census data attest to the absence of increase in the New York African population. The 1746 peak in the presence of African children in New York City appears to be associated with importations of girls and boys under 16 years old, not to births in New York. This is evidenced by the marked decline in the ratio of children per woman of childbearing years as importations abated (Figure 143). These data show clearly that an African woman of reproductive age (and her male partner) had one or fewer children on average. If the number of children in the census who were actually born in New York is small, then fertility in New York City may have been much lower than one child per African woman of reproductive age.

Our general assessment is that although many of these children would have been African born and forced to migrate to New York, most of those who died as children and were buried in the burial ground were born in New York. This inference is consistent with the chemical tracing data reported in Chapter 6 and hypoplasia data of Chapter 8. The census data used here largely represent survivors and persons imported after ages of highest mortality risk. These children were likely to show disproportionately high frequencies of African birth, compared to those children who were born to captive parents and who died very young. Also, given our evidence of relatively low mortality for children 5–14 years of age in New York, a preponderance of the older children of the census were probably surviving to die in concert with the adult age-specific mortality patterns that we have shown previously. We would, therefore, predict that future testing of those individuals with

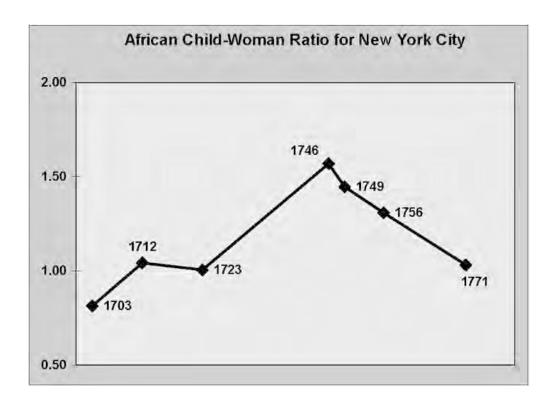


Figure 143. African childwoman ratio, New York City.

African-associated chemical levels (Pb and Sr) in early-developing teeth and North American chemical levels in later-developing teeth and bone would represent the children identified in the census.

Paleopathology

Paleopathological evidence for the people interred in the New York African Burial Ground site indicates that African women were involved in strenuous labor from adolescence onward and were nutritionally compromised. They also had high rates of degenerative joint disorders and exhibited evidence of enthesopathies and muscle hypertrophy (see Chapter 11), as well as nutritional deficiencies, including porotic hyperostosis and general infection (see Chapter 10). Each of these factors has a potential negative impact on fecundity (the ability to conceive and to bring a fetus to term). The large number of perinatal and newborn infants points to these effects just cited.

In addition, subadult data indicate that infants and toddlers were at risk because of nutritionally compromised mothers, weaning, nutritional insufficiency, and infection as evidenced by dental enamel defects of both the deciduous and permanent teeth (see Chapter 8), rates of infection and porotic hyperostosis

(anemia) (see Chapter 10), and retarded growth and development (see Chapter 12).

The political economic regime (Figure 144) established a biological lifestyle of arduous work for adolescent and adult females that resulted in physiological disruption due to the synergistic interaction of:

- intensive physical exertion and energy expenditure:
- intensive utilization of dietary nutrients;
- intensive utilization of marginal nutritional stores;
- chronic exposure to environmental hazards;
- intensive utilization of immunological and psychophysiological responses.

Therefore, the demographic, paleodemographic and paleopathological data indicate that:

- High mortality among women at the beginning of their reproductive years affected the population fertility (reproductive rates) and fecundity, the biological potential for procreation.
- Nutritional inadequacy, infectious-disease loads, and mortality indicate a compromised adult female population, thus reducing fertility (e.g., low fat stores followed by amenorrhea), and a potential for immunosuppression and an increase in susceptibility or risk factors for morbidity and mortality.

➤ Trade in Africans Responsive to local political, social, and economic forces Mainly from West Indies through 1740 More direct from Africa after 1741 ➤ Urban situation Typical low sex ratio Demand for dockworkers and other day labor, domestic labor ➤ Local market Agricultural and public needs shifted in eighteenth century to domestic and day labor needs Youth emphasized in local sales Increasing demand for young girls for domestic drudge labor ➤ Holding size Small urban households with limited in-house labor needs Average holding of enslaved Africans: 2.4

> Social control

Political and market response to active resistance

Sales of young children beginning at age 5

Neglect and disposal of older Africans

Decreased importation of men, decreased importation from West Indies

> Ideology

Unlimited Goods

Figure 144. Summary of relevant factors of the political economic regime of colonial New York.

 Infants and children began life compromised and at high risk of illness and dying. Those who survived past the second year of life were faced with strenuous physical exertion from early childhood and the cycle of exertion, deprivation, increased susceptibility (although it could be argued that these children were the most adaptable), and early adulthood death.

Therefore, the economic needs and environmental constraints established by New York slaveholders produced a regime of physiological disruption that substantially impacted the fertility rates and almost certainly created a situation of impaired fecundity, which contributed significantly to the lack of popu-

lation growth in the enslaved African population of seventeenth- and eighteenth-century New York. In addition, this economic strategy was one of "unlimited good." Because enslaved captives could be replaced continuously, European enslavers had no incentive for encouraging fertility or intensive caregiving of infants, who demanded high investment but could do little work. Although the abusive practices of the British Caribbean colonies, where infants might be taken from their mothers immediately so that loss of labor would be minimized, are not documented for New York, this city's slaveholders demonstrated no desire to possess young Africans or to "breed" their captives. They only needed them to keep the market's products and profits flowing.

CHAPTER 14

Discussion

M. L. Blakey, L. M. Rankin-Hill, A. H. Goodman, and F. L. C. Jackson

The explanatory frameworks of this study are heavily influenced by our understanding of the historical expediencies of European economic exploitation and power, and the ways these imperatives came to be played out in the condition of Africans in the Atlantic World. Of course, imperatives of safety, profit, moral legitimacy and so forth were negotiated as Europeans wrestled with conditions they could not entirely control, including the needs and responses of Africans themselves. The "hows" and "whys" of the biological effects we have examined are largely explicable in terms of historical, political, and economic motivations, practices, and policies, as well as modes of resistance to them and other limiting factors, such as the natural environment. Why were babies dying? Slaveholders did not want them for economic reasons at this time and in this place. The evidence of growth delays in children suggests a lack of investment in them by those empowered to do so. Although African women also at times allowed their children to die rather than make them into slaves, at other times we see clear archaeological evidence (see *The* Archaeology of the New York African Burial Ground, Volume 2 of this series) of profound love of children, in this mortuary context. And in New York, there were few opportunities for family formation with men and women working and sleeping in isolated workshops and homes, respectively (see Medford, Brown, Carrington, et al. 2009b; Medford, Brown, Heywood, et al. 2009). The sex ratio, ages, and sources of new arrivals reflected English struggles to control Africans who rebelled and to capitalize on market availability and the price of captives. Sex ratio affects fertility, and the spread of diseases affects child mortality, particularly when females are disempowered as they were under American slavery. Each chapter has examples of biological effects of power and poverty. We will

not attempt to explain the more interesting details, which each author does best in his and her own words. This discussion is meant as a starting point for pulling together the shadowy evidence that human skeletons bear on 419 all-but-forgotten lives.

The Main Findings of Our Study

What are the findings of the skeletal biological research and what are the limitations and further implications of this work? As to the origin and affiliation of the persons buried in the New York African Burial Ground, the results of genetic analyses (see Chapter 5), coupled with historical and archaeological research, suggest that most individuals were derived from a variety of known states and empires mainly, but not exclusively, in West and West Central Africa.

Complementing the above, the preponderance of the ethnohistorical and chemical evidence indicates that most of the New York African Burial Ground individuals who died as adults were African-born, free people who were captured and who then underwent the Atlantic passage to subsequently die enslaved in New York. Conversely, those who died before their first 8 years of life were very likely to have been born in New York. Historical documentation suggests that some individuals, especially early in the eighteenth century, would have come from Africa to the Caribbean first and then to New York. Strontium isotope data (see Chapter 6) suggest that individuals among a small, tested sample may have grown up in the Caribbean.

Chapter 6 presented results from two chemical methods for assessing where individuals were born and grew up. In the case of strontium isotope analysis, individuals below the age of 8 years matched the isotopic signature associated with Manhattan, whereas the majority of individuals over the age of 8 years did not. This was especially true for individuals with culturally modified teeth. Similarly for elemental signature analysis, young individuals clustered together, suggesting they were born in New York—adding support to our interpretation of the strontium isotope analyses. These conclusions, however, are based on the small sample of individuals whose chemistry was assayed. Notably, historical evidence points to 9 years as the youngest common age of forced migration from Africa to New York. The study of hypoplasia in the third molar (see Chapter 8) shows high stress that also seems associated with exposure to the slave trade and New York between 9 and 16 years of age. The convergence of these data seems important.

High lead levels in the teeth of individuals who were plausibly born in New York were an unexpected finding. Samples of enamel that were calcified during the first years of life were also taken using an innovative methodology and technology: laser ablation inductively coupled-plasma mass spectrometry. These results indicate that lead levels were probably high during breast-feeding and weaning. It is reasonable to speculate that lead absorption was an additional stressor that had a negative interaction with infant and childhood diets and illnesses. For example, a poor intake of calcium would have increased the absorption of lead, which then could have led to anorexia and decreased intake of food.

Enamel hypoplasia data in Chapter 8 suggest that infant and childhood health were worse for individuals who were born in New York and died in childhood than for individuals who were more likely to have been born in Africa but who died as adults. Enamel hypoplasia frequencies representing malnutrition and disease events in childhood were extraordinarily high for children born in New York when compared to samples from other archaeological sites. A similar trend was shown for infectious disease (Chapter 10). An analysis relying on age-differentiated samples showed that older persons who were most likely to have spent childhoods in central and West Africa had the fewest hypoplasias even when occlusal wear was controlled. An analysis comparing individuals with and without culturally modified teeth showed a similar trend, but the difference was not statistically significant. Planned is a far more rigorous test, comparing enamel defects among a large sample (approximately 200) of individuals whose places of birth can, as we predicted in 1993, be shown on the

basis of their chemical signatures, of the differences in childhood health in New York, Africa, and the Caribbean. The scientific results of this test would shed light on the human cost of enslavement. Our data do make clear, however, that those who died as children and were buried in the New York African Burial Ground can be frequently characterized by delayed growth and development due to a combination of nutritional, disease, and probable work-related stresses (see Chapter 12).

Infant mortality was high and estimated to be much higher than in the English population of New York City. Infants, especially newborns, and weaning-age children, had especially high levels of new infection, anemia, and other indicators of poor nutrition such as growth retardation and stunting. Low frequencies of pathology, especially active lesions, in children relative to adults may indicate that those who died as children tended to die of acute disease and/or nutritional stresses without bearing extended morbidity and recovery from disease. As is frequently the case among diverse human societies, older children were the healthiest persons in the population.

Late adolescents and young adults (15-25-yearolds) also experienced distinctively early and high mortality when compared either to their English contemporaries or to later African American populations. But might this not be partly an artifact of the immigrant nature of those populations? Among Africans, high mortality in those ages reflects the proportionately large number of adolescents and young adults who were forced to migrate to New York and then to die young, becoming numerically prominent among the buried. Generally, adolescents are expected to show low mortality that rivals that of older children. Females also had high rates of active infection during these ages, unlike males. Adolescent females, young women, infants, and young children were distinctively exposed to new active infection relative to healed lesions, although adolescent females and young women also had substantial evidence of healed lesions, unlike infants (see Chapter 10). Oral health related to constraints upon menu and hygiene was also generally poor (Chapter 9).

Throughout the eighteenth century, the size of the New York African population remained fairly constant despite continuous importation—nor had the African population increased by virtue of fertility, which was actually below replacement values (see Chapters 7 and 13). This lack of natural increase is consistent with severely exploited enslaved populations in the

Caribbean, a trend that is associated with an open transatlantic trade in human captives in which the large supply renders the enslaved disposable.

The New York population was probably not exposed to syphilis for very long, unlike Caribbean populations whose low fertility has been partly attributable to the introduction of the venereal disease and high sex ratios. Life expectancy was low, and few Africans lived to old age. Yet, the instability of the population with regard to migration makes the interpretation of life tables somewhat problematic. The percentage of New York African Burial Ground individuals living beyond 55 years is similar, however, to census data from municipal records (between 1 and 3 percent). This observation is consistent with the study of the Newton Plantation in Barbados, demonstrating comparability between skeletal and archival data on adult mortality, unlike the fragile skeletal remains of infants that underrepresent mortality by virtue of their rapid decay in the ground or selective interment. The English community, who would have presumed to own these Africans, exhibited opposite mortality trends, with many times more English males and females living to old age. Young English men, however, were well represented among the dead, most likely owing to ages of migration, interpersonal violence, trauma, and stressful conditions as seems the case for even younger African men, women, and adolescents.

Both African men and women experienced elevated work stresses, with some differences in the distribution of load-bearing—toward the upper spine in women and the lower spine in men. The overlap in evidence of muscle hypertrophy in the limbs and degenerative joint disease across gender is perhaps more impressive than the differences (see Chapter 11). It is clear that most men and women were exposed to arduous work for extended periods of time.

New York Africans are among highly stressed populations examined by paleopathologists over broad spans of time and space. The physical effects of slavery in New York resemble those of southern plantations and were not in any sense benign. Comparisons with other studies must be considered to be approximate because of the differences in diagnosis, scoring, and data recovery protocols with which the field of skeletal biology continues to contend. However, every effort has been made to put these comparisons forward, with the necessary qualifying information, for a fair evaluation of their meaningfulness. Comparisons between the New York African Burial Ground and other archaeological sites can be most directly made

in relation to our own previous projects, such as the FABC, for which we directed the methodology (see Chapter 8).

In some respects, such as the absence of natural population increase, African New Yorkers resemble the mean conditions of workers on Caribbean and Louisiana sugar plantations and South Carolina, during a time when open transatlantic trade made it easier to replace dead workers than would be the case after the 1808 cessation of a legal African supply. African New Yorkers were in a quite different geographical setting than the more familiar plantation economies. They were, nonetheless, part of that larger, slavery-fueled, Atlantic World economy, owned and managed by the same colonial European captors as in the British West Indies and the South.

New Problems and Solutions

Some interesting points have been learned as a project, in moving away from racist and inhumane anthropological practices of the past. Those practices are not as readily escaped as some of us had believed, even though we were willing to confront problems head-on. Every effort to make comparisons with other skeletal populations attempted to drag us back to race. Whether DNA, dental morphology, or craniometry, the comparative data of anthropologists tended to have taken perfectly good measurements of specific ethnic, linguistic, or historically particular regional groups and then aggregated them into sub-Saharan, West African, black, white, or some other pseudobiological category. Such essentially racial categories are irrelevant to ascertaining the more specific African geographical regions and the historically relevant cultural groups within such regions, with which a skeleton's biological distinctiveness is associated. Sometimes where specific groups were available for comparison, they had no direct relevance to the early colonial American experience. There are few biological data available on eighteenth-century English, Dutch, Seneca, Delaware, Bakongo, Akan, or Yoruba, specifically. A case in point is the Gold Coast (Akan) crania that we measured at the American Museum of Natural History, thanks to the collegial aid of Dr. Ian Tatersall. They had apparently not been of much interest to previous researchers, yet this comparative sample cannot be neglected for assessing cranial affinities of the African Diaspora. Interestingly, no English sample was available for comparison from the same museum. The craniometric database gratefully received from Dr. W. W. Howells had no British, Irish, or Dutch (we used the Scandinavian sample). Indeed, it seems that with racial thinking any conveniently measured or sampled Eastern European, Southwestern Native American, or sub-Saharan African has been allowed to suffice as a surrogate for any other specific population on those continents. The race concept has allowed this kind of loose thinking to persist and even to pass as rigor when such categories are permitted to define research questions. The research team's use of comparative databases is still imprecise and includes some lumped groups and historically implausible parental samples of cranial measurements. We, nonetheless, believe these data are far less muddy in this regard than usual and we will continue to refine them.

The dearth of DNA data from state-level central African societies, but sufficient Pigmy and Khoi San samples, communicates much concerning how many physical anthropologists and geneticists view the significance of Africa. We encourage our colleagues to obtain disaggregated data (or to disaggregate secondary data ourselves) to restore culturally and genetically identifiable populations from the lumped, racialized constructions that obscure the historically real populations to which we want to assess American relationships. The team's collaborators at the University of Maryland are taking another strategy, teaming with African nations using sampling methods that are more useful to us in order to obtain proper comparative data. By discussing the range of cultural historical groups who were imported, we have begun to establish the range, if not the specific, nonracial identities of New York African Burial Ground individuals.

By addressing questions raised by African American community members and scholars, we have begun to identify highly consequential voids in the corpus of anthropological knowledge. The work initiated by this research project, under Dr. Fatimah Jackson's leadership, toward the establishment of African genetic databanks in Cameroon and elsewhere, has been an unanticipated outcome of our observations. In order to make comparisons of New York African Burial Ground remains to African cultural groups that would result in accurate population affiliations, a more complete set of genetic data needs to be created on descendants of the state-level societies that had been involved in the trade of human captives. A similar case can also be made of European and Native peoples who contributed to early North American colonial history and the genome. The public interest in this research question also spurred interest in the possibility of tracing living African Americans' ancestry. The possibility of recovering some of the identity and intercontinental ties that slavery destroyed in order to dehumanize blacks seems an outstanding use of a very different anthropology than we have seen before. The New York African Burial Ground Project has resolved significant methodological and technical problems with both chemical sourcing and DNA affiliation studies. Yet it is not currently possible to reliably determine a dead or living person's African ethnic ("tribal") ancestry on the basis of DNA. No one has yet published controlled studies to support such a claim.

Continuously, we have been asked by reviewers, overseers, and audience members about comparisons of the New York African Burial Ground sample to colonial European-American samples. For some, this was a critically important question, one that would validate or invalidate the findings of the New York African Burial Ground Project research. From the very beginning, the project sought comparative European-American colonial skeletal and historical cemetery samples. The search was basically unsuccessful; first, apparently European-American populations are rarely disinterred and/or studied; second, when European-American populations are excavated, they are predominantly from poorhouses or almshouses. We considered these populations inappropriate comparisons for establishing the relative conditions of enslaved Africans and colonial Europeans, despite the encouragement from some government oversight agencies and their consultants for us to pursue those comparisons.

Poorhouse or almshouse samples are primarily composed of the insane, sick, aged, lame, blind, chronically intemperate, and indigent (e.g., Elia 1991; Lanphear 1988). In most studies, the greater proportion of inmates was there for intemperance. To argue that these represent the laboring lower classes of Euro-Americans does not seem plausible. In fact, many if not most were social outcasts, not the class of Europeans who were bound to indentured servitude and who would have been a reasonable comparative sample. Some portion of the laboring lower social classes is probably represented in poorhouse and almshouse samples, but those segments have not been distinguished from the insane, infirm, and nonlaboring inmates. Inmates of these institutions, at a minimum, experienced similar exposure to infectious diseases and poor nutrition as did enslaved people. Nevertheless, the lower classes and/or social outcasts are not socially, biologically, or political-economically com-

parable to the people interred in the African Burial Ground. The latter are representative of the average or vast majority of Africans in New York; the former represents a small minority of unrepresentative Europeans and Americans, even for the nineteenth-century context from which these collections usually derive. A consequence of comparison would be to artificially produce a closer proximity between the conditions of enslaved Africans and free Europeans than is justified. Our solution has been to use cemetery death records for Trinity Church Yard, and these are qualified as evidence of the mortality of those who would have presumed to own Africans in New York, given the high proportion of landowning Englishmen in that congregation. This seems fair until a sample of the majority European population in colonial New York City has been excavated and made available for study using methods comparable to ours.

It should also be noted, with regard to such comparisons as these, that those who were enslaved had no designated social class. Even their membership in the human race was being intensely debated and contested during their lives in New York. Chattel does not have a social class.

Interestingly, only one anthropologist has asked us about the health status of contemporaneous skeletal populations in Africa itself and was quite disappointed when the response was that none had been sufficiently studied and reported (see Chapter 2). What would their lives, health status, and mortality have been if those who made up the New York African Burial Ground population, and others like them, had not been

captured and enslaved? That is the question for many people ultimately impacted by these consequences.

Finally, the project may have helped improve African American interest in archaeology, and archaeologists' and physical anthropologists' interest in ethics. These would be good things, and we hope to have contributed to it. It seems true, however, that these groups still remain at a distance.

Along with the history and archaeology reports, the skeletal biology report is part of a trilogy that should be read together. These reports document the first historical anthropological efforts to tell in detail the story of the eighteenth-century enslaved African American population of New York. In this report, we have been able to reinsert into the historical record, with solid evidence, some of the trials and transformations of this diverse group of individuals. Their bones and teeth speak eloquently of their lives before death, bearing witness to the stresses of malnutrition, infection, poor medical care, lead pollution, overwork, and injury. Individuals came to New York via diverse routes and from diverse areas. Some were born into slavery, but most adults probably were not. Unfortunately, the hardships they endured rival those confronted by and imposed on any other group. Nevertheless, the enslaved Africans of New York rebelled against, survived, endured, and built the material foundation of the financial capitol and capital of the Western world. By the evidence thus ascertained, let these reports put to rest any assumption that this achievement came without the extraordinary abuse and work of Africans in eighteenth-century New York.

References

- Acheson, R. M.
 - 1966 Maturation of the Skeleton. In *Human Development*, edited by F. Falkner, pp. 465–502. W. B. Saunders, Philadelphia, Pennsylvania.
- Acsádi, G., and J. Nemeskéri
 - 1970 *History of Human Life and Mortality*. Akadémiai Kiadó, Budapest, Hungary.
- Agorsah, E. K.
 - 1994 Maroon Heritage: Archaeological, Ethnographic, and Historical Perspectives. Canoe Press, Kingston, Jamaica.
- Agorsah, E. K. (editor)
 - 1994 Maroon Heritage: Archaeological, Ethnographic, and Historical Perspectives.Canoe Press, University of the West Indies, Kingston, Jamaica.
- Albert, A. L., and D. L. Greene
 - 1999 Bilateral Asymmetry in Skeletal Growth and Maturation as an Indicator of Environmental Stress. *American Journal of Physical Anthropology* 110:341–349.
- Allegre, C. J., B. Dupre, P. Negrel, and J. Gaillardet 1996 Sr-Nd-Pb Isotope Systematics in Amazon and Congo River Systems: Constraints about Erosion Processes. *Chemical Geology* 131:93–112.
- Allen, L. H.
 - 1993 The Nutrition CRSP: What Is Marginal Malnutrition and Does It Affect Human Functions? *Nutrition Reviews* 51:255–267.
- Alt, K. W., and S. L. Pichler
- 1998 Artificial Modifications of Human Teeth.
 In *Dental Anthropology: Fundamentals, Limits, and Prospects*, edited by K. W. Alt,
 F. W. Rosing, and M. Teschler-Nicola, pp.
 387–415. Springer-Verlag/Wien, New York.

- Amarasiriwardena, D., S. F. Durrant, A. Lásztity, A. Krushevska, M. D. Argentine, and R. M. Barnes
 - 1997 Semiquantitative Analysis of Biological Materials by Inductively Coupled Plasma-Mass Spectrometry. *Microchemistry Journal* 56:352–372.
- Ambrose, S. H.
 - 1991 Effects of Diet, Climate and Physiology on Nitrogen Isotope Abundances in Terrestrial Foodwebs. *Journal of Archaeological Science* 18:293–317.
 - 1993 Isotopic Analysis of Paleodiets: Methodological and Interpretive Considerations. In *Investigations of Ancient Human Tissue: Chemical Analysis in Anthropology*, edited by M.K. Sanford, pp. 59–129. Food and Nutrition in History and Anthropology Vol. 10. Gordon and Breach, Philadelphia, Pennsylvania.
- Ameyaw, M. M., E. S. Collie-Duguid, R. H. Powrie, D. Ofori-Adjei, and H. L. Mcleod
 - 1999 Thiopurine Methyltransferase Alleles in British and Ghanaian Populations. *Human Molecular Genetics* 8(2):367–370.
- Andah, B. W.
 - 1995 Studying African Societies in Cultural Context. In *Making Alternative Histories:*The Practice of Archaeology and History in Non-Western Settings, edited by P. R. Schmidt and T. C. Patterson, pp. 149–182. School of American Research Press, Santa Fe, New Mexico.
- Angel, J. L.
 - 1969 The Bases of Paleodemography. *American Journal of Physical Anthropology* 48:493–533.

- 1976 Colonial to Modern Skeletal Change in the U.S.A. *American Journal of Physical Anthropology* 45:723–736.
- Angel, J. L., J. O. Kelley, M. Parrington, and S. Pinter
 - 1987 Life Stresses of the Free Black Community as Represented by the First African Baptist Church, Philadelphia, 1823–1841. *American Journal of Physical Anthropology* 74:213–229.
- Ansa, K. O.
 - 1995 Identification and Validation of the Sankofa Symbol. *Update* 1:3.
- Aptheker, H.
 - 1943 American Negro Slave Revolts. International Publishers. New York.
- Arends, A., M. Alvarez, D. Velazquez, M. Bravo, R. Salazar, J. M. Guevara, and O. Castillo
- 2000 Determination of Beta-Globin Gene Cluster Haplotypes and Prevalence of Alpha-Thalassemia in Sickle Cell Anemia Patients in Venezuela. *American Journal of Hematology* 64(2):87–90.
- Arizona State University Dental Anthropology System
 - n.d. Scoring Procedures for Morphological Traits of the Permanent Dentition. Arizona State University, Tempe.
- Armelagos, G. J.
 - 1968 Paleopathology of Three Archaeological Populations from Sudanese Nubia. Unpublished Ph.D. dissertation, Department of Anthropology, University of Colorado, Boulder.
 - 1969 Disease in Ancient Nubia. *Science* 163:255–259.
- Armelagos, G. J., D. S. Carlson, and D. P. Van Gerven 1982 The Theoretical Foundation and Development of Skeletal Biology. In *A History of American Physical Anthropology, 1930– 1980*, edited by F. Spencer, pp. 305–328. Academic Press, New York.
- Armelagos, G. J., and A. H. Goodman
- 1998 Race, Racism, and Anthropology. In *Building a New Biocultural Synthesis: Political-Economic Perspectives on Human Biology*, edited by A. H. Goodman and T. L. Leatherman, pp. 359–378. University of Michigan Press, Ann Arbor.

- Armelagos, G. J., A. Goodman, and K. H. Jacobs 1998 The Ecological Perspective in Disease. In Health and the Human Condition: Perspectives on Medical Anthropology, edited by M. H. Logan and E. E. Hunt, pp. 71–84. Duxbury Press, North Scituate, Massachusetts.
- Armelagos, G. J., J. H. Mielke, and J. Winter 1971 *Bibliography of Human Paleopathology*. Research Reports No. 8. Department of Anthropology, University of Massachusetts, Amherst.
- Armstrong, D. V.
- 1990 The Old Village and the Great House: An Archaeological and Historical Examination of Drax Hall Plantation, St. Ann's Bay, Jamaica. University of Illinois Press, Urbana.
- Armstrong, D. V., and M. Fleishman
 1993 Analysis of Four Burials from African
 Jamaican House-Yard Contexts at Seville.
 Reports of the Jamaican National Historic
 Trust. Archaeological Report 65. Syracuse
 University, Syracuse, New York.
- Arriaza, B. T.
- 1993 Seronegative Spondyloarthropathies and Diffuse Idiopathic Skeletal Hyperostosis in Ancient Northern Chile. *American Journal of Physical Anthropology* 91:263–278.
- Asala, S. A., and F. E. Mbajiorgu
 - 1996 Epigenetic Variation in the Nigerian Skull: Sutural Pattern at the Pterion. *East African Medical Journal* 73(7):484–486.
- Aufderheide, A. C.
 - 1989 Chemical Analysis of Skeletal Remains. In *Reconstruction of Life from the Skeleton*, edited by M. Y. İşcan and K. A. R. Kennedy, pp. 237–260. Alan R. Liss, New York.
- Aufderheide, A. C., J. L. Angel, J. O. Kelley, A. C. Outlaw, M. A. Outlaw, G. Rapp, Jr., and L. E. Wittmers
 - 1985 Lead in Bone III: Prediction of Social Correlates in Four Colonial American Populations (Catoctin Furnace, College Landing, Governor's Land and Irene Mound).

 American Journal of Physical Anthropology 66:353–361.

- Aufderheide, A. C., F. D. Neiman, L. E. Wittmers, and G. Rapp, Jr.
 - 1981 Lead in Bone II: Skeletal-Lead Content as an Indicator of Lifetime Lead Ingestion and the Social Correlates in an Archaeological Population. *American Journal of Physical Anthropology* 55:285–291.
- Aufderheide, A. C., and C. Rodriguez-Martin 1998 *The Cambridge Encyclopedia of Human Paleopathology*. Cambridge University Press, Cambridge, Great Britain.
- Aufderheide, A. C., L. E. Wittmers, Jr., G. Rapp, Jr., and J. Wallgren
 - 1988 Anthropological Applications of Skeletal Lead Analysis. *American Anthropologist* 90(4):931–936.
- Ayala, F. J., and A. A. Escalante
 - 1996 The Evolution of Human Populations: A Molecular Perspective. *Molecular Phylogenetics and Evolution* 5(1):188–201.
- Baber, W. L.
 - 1999 St. Clair Drake: Scholar and Activist. In *African American Pioneers in Anthropology*, edited by I. E. Harrison and F. V. Harrison, pp. 191–212. University of Illinois Press, Urbana.
- Baena, A., J. Y. Leung, A. D. Sullivan, I. Landires, N. Vásquez-Luna, J. Quiñones-Berrocal, P. A. Fraser, G. P. Uko, J. C. Delgado, O. P. Clavijo, S. Thim, S. R. Meshnick, T. Nyirenda, E. J. Yunis, and A. E. Goldfeld
 - 2002 TNA-alpha Promoter Single Nucleotide Polymorphisms Are Markers of Human Ancestry. *Genes and Immunity* 3(8):482–487.
- Bailit, H. L.
 - 1975 Dental Variation among Populations: An Anthropologic View. *Dental Clinics of North America* 19(1):125–139.
- Baker, L. D.
 - 1998 From Savage to Negro: Anthropology and the Construction of Race, 1896–1954.
 University of California Press, Berkeley.
- Bandelt, H. J., J. Alves-Silva, P. E. M. Guimares,
 M. S. Santos, A. Brehm, L. Pereira, A. Coppa, J. M.
 Larruga, C. Rengo, R. Scozzari, A. Torroni, M. J.
 Prata, A. Amorim, V. F. Prado, and S. D. J. Pena
 2001 Phylogeography of the Human Mitochondrial Haplogroup L3e: A Snapshot of Afri-

- can Prehistory and Atlantic Slave Trade. *Annals of Human Genetics* 65(6):549–563.
- Bass, W. M.
 - 1971 Human Osteology: A Laboratory and Field Manual of the Human Skeleton. Missouri Archaeological Society, Columbia.
 - 1987 Human Osteology: A Laboratory and Field Manual. 3rd ed., 1st printing. Special Publication No. 2. Missouri Archaeological Society, Columbia, Missouri.

Bastide, R.

- 1967 Les Ameriques Noires, Les Civilisations Africaines dans Le Nouveau Monde. Payot, Paris.
- Beavers, R. C., T. R. Lamb, and J. R. Greene
 1993 Archaeology and History. Burial Archaeology and Osteology of Charity Hospital/
 Cypress Grove II Cemetery, New Orleans,
 Louisiana, vol. 1. Department of Anthropology, University of New Orleans, New Orleans, Louisiana.
- Benjamin, M., T. Kumai, S. Milz, B. M. Boszczyk, A. A. Boszczyk, and J. R. Ralphs
 - 2002 The Skeletal Attachments of Tendons-Tendon "Enthuses." Comparative Biochemistry and Physiology–Part A. *Molecular and Integrative Physiology* 133(4):931–945.

Berlin, I.

- 1998 Many Thousand Gone: The First Two Centuries of Slavery in North America. Harvard University Press, Cambridge, Massachusetts.
- Bernal, M.
 - 1987 The Fabrication of Ancient Greece, 1785–1985. Black Athena: The Afro-Asiatic Roots of Civilization, vol. 1. Rutgers University Press, New Brunswick, New Jersey.
- Biondi, G., O. Rickards, C. Martinez-Labarga, T. Taraborelli, B. Ciminelli, and G. Gruppioni
 - 1996 Biodemography and Genetics of the Berba of Benin. *American Journal of Physical Anthropology* 99:519–535.
- Bird, A. R., P. Ellis, K. Wood, C. Mathew, and C. Karabus
 - 1987 Inherited Haemoglobin Variants in a South African Population. *Journal of Medical Genetics* 24(4):215–219.

- Blakely, R. L., and L. A. Beck
 - 1982 Bioarchaeology in the Urban Context. In Archaeology of Urban America: The Search for Pattern and Process, edited by R. S. Dickens, Jr., pp. 175–207. Academic Press, New York.
- Blakey, M. L.
 - Sociopolitical Bias and Ideological Production in Historical Archaeology. In *The Socio-Politics of Archaeology*, edited by J. M. Gero, D. Lacy, and M. L. Blakey, pp. 5–16. Research Report No. 23. Department of Anthropology, University of Massachusetts, Amherst.
 - 1987 Fetal and Childhood Health in Late 18th and Early 19th Century Afro-Americans: Enamel Hypoplasia and Hypocalcification in the FABC Skeletal Population. *American Journal of Physical Anthropology* 72:179.
 - 1988 Social Policy, Economics, and Demographic Change in Nanticoke-Moor Ethnohistory. *American Journal of Physical Anthropology* 75:493–502.
 - 1990 American Nationality and Ethnicity in the Depicted Past. In *Politics of the Past*, edited by P. Gathercole and D. Lowenthal, pp. 38–48. Allen and Unwin, London.
 - 1994a Psychophysiological Stress and Disorders of Industrial Society: A Critical Theoretical Formulation for Biocultural Research. In *Diagnosing America: Anthropology and Public Engagement*, edited by S. Forman, pp. 149–192. University of Michigan Press, Ann Arbor.
 - 1994b Passing the Buck: Naturalism and Individualism as Anthropological Expression of Euro-American Denial. In *Race*, edited by S. Gregory and R. Sanjek, pp. 270–284. Rutgers University Press, New Brunswick, New Jersey.
 - 1995 Race, Nationalism, and the Afrocentric Past. In *Making Alternative Histories:*The Practice of Archaeology and History in Non-Western Settings, edited by P. R. Schmidt and T. C. Patterson, pp. 213–228. School of American Research Press, Santa Fe, New Mexico.
 - 1996 Skull Doctors Revisited: Intrinsic Social and Political Bias in the History of American Physical Anthropology, with Special

- Reference to the Work of Aleš Hrdlička. In Race and Other Misadventures: Essays in Honor of Ashley Montague in His Ninetieth Year, edited by L. Reynolds and L. Lieberman, pp. 64–95. General Hall, New York.
- 1998a The New York African Burial Ground Project: An Examination of Enslaved Lives, a Construction of Ancestral Ties. *Transforming Anthropology* 7:53–58.
- 1998b Beyond European Enlightenment: Toward a Critical and Humanistic Human Biology. In *Building a New Biocultural Synthesis*, edited by A. H. Goodman and T. L. Leatherman, pp. 379–406. University of Michigan Press, Ann Arbor.
- 2001 Bioarchaeology of the African Diaspora in the Americas: Its Origins and Scope.

 Annual Review of Anthropology 30:387–422.
- Blakey, M. L., and G. J. Armelagos
- 1985 Deciduous Enamel Defects in Prehistoric Americans from Dickson Mounds: Prenatal and Postnatal Stress. *American Journal of Physical Anthropology* 66:371–380.
- Blakey, M. L., S. B. Jenkins, D. Jamison, and T. Leslie
 - 1997 Dental Indicators of Fetal and Childhood Health in the Archaeological Remains of a Nineteenth Century African-American Community. In *Pathways to Success*, edited by L. R. Sloan and B. J. Starr, pp. 177–193. Howard University Press, Washington, D.C.
- Blakey, M. L., and C. J. La Roche
 - 1997 Seizing Intellectual Power: The Dialogue at the New York African Burial Ground. *Historical Archaeology* 31(3):84–106.
- Blakey, M. L., T. E. Leslie, and J. P. Reidy
- 1992 Chronological Distribution of Dental Enamel Hypoplasia in African American Slaves: A Test of the Weaning Hypothesis. *American Journal of Physical Anthropology* Supplement 14:50 (abstract).
- 1994 Frequency and Chronological Distribution of Dental Enamel Hypoplasia in Enslaved African Americans: A Test of the Weaning Hypothesis. *American Journal of Physical Anthropology* 95:371–383.

- Blum, J. D., E. H. Taliaferro, M. T. Weisse, and R. T. Holmes
 - 2000 Changes in Sr/Ca, Ba/Ca and ⁸⁷Sr/⁸⁶Sr Ratios between Trophic Levels in Two Forest Ecosystems in the Northeastern U.S.A. *Biogeochemistry* 49:87–101.

Boas, F.

- 1911 Changes in Bodily Form of Descendants of Immigrants. In *Abstract of the Report on Changes in Bodily Form of Descendants of Immigrants*, pp. 141–154. The Immigration Commission, Washington, D.C. U. S. Government Printing Office, Washington, D.C.
- Bocquet-Appel, J. P., and C. Masset 1982 Farewell to Paleodemography. *Journal of Human Evolution* 11:321–333.

Bogin, B.

- 1999 *Patterns of Human Growth*, 2nd ed. Cambridge University Press, New York.
- Bogue, D. J.
 - 1969 *Principles of Demography*. John Wiley and Sons, New York.

Bolles, A. L.

- 1999 Ellen Irene Diggs: Coming of Age in Atlanta, Havana, and Baltimore. In *African American Pioneers in Anthropology*, edited by I. E. Harrison and F. V. Harrison, pp.154–167. University of Illinois Press, Urbana.
- Bond, G. C.
 - 1988 A Social Portrait of John Gibbs St. Clair Drake: An American Anthropologist. *American Ethnologist* 15:762–782.
- Boom, R., C. J. Sol, M. M. Salimans, C. L. Jansen,
 P. M. Wertheim-van Dillen, and J. van der Noordaa
 1990 Rapid and Simple Method for Purification of Nucleic Acids. *Journal of Clinical Microbiology* 28(3):495–503.
- Bordin, S., V. G. Crespi, A. S. Duarte, D. S. Basseres, M. B. Melo, A. P. Vieira, S. T. Saad, and F. F. Costa
 - 2002 DNAase I Hypersensitive Site 3´ to the Beta-globin Gene Cluster Contains a TAA Insertion Specific for Beta(S)-Benin Haplotype. *Haematologica* 87(3):246–249.
- Bortolini, M. C., F. M. Salzano, M. A. Zago, W. A. Da Silva Junior, and T. de A. Weimer
 - 1997 Genetic Variability in Two Brazilian Ethnic Groups: A Comparison of Mitochondrial

and Protein Data. *American Journal of Physical Anthropology* 103:147–156.

Boyde, A.

- 2003 The Real Response of Bone to Exercise. *Journal of Anatomy* 203(2):173–189.
- Brakez, Z., E. Bosch, H. Izaabel, O. Akhayat, D. Comas, J. Bertranpetit, and F. Calafell
 - 2001 Human Mitochondrial DNA Sequence Variation in the Moroccan Population of the Souss Area. *Annals of Human Biology* 28(3):295–307.
- Brehm, A., L. Pereira, H. J. Bandelt, M. J. Prata, and A. Amorim
 - 2002 Mitochondrial Portrait of the Cabo Verde Archipelago: The Senegambian Outpost of Atlantic Slave Trade. *Annals of Human Genetics* 66(1):49–60.

Bridges, P. S.

- 1992 Prehistoric Arthritis in the Americas. *Annual Review of Anthropology* 21:67–91.
- 1994 Vertebral Arthritis and Physical Activities in the Prehistoric Southeastern United States. *American Journal of Physical Anthropology* 93:83–93.

Brodhead, J. R.

- 1853–1887 Documents Relative to the Colonial History of the State of New York: Procured in Holland, England, and France, edited by E. B. O'Callaghan and B. Fernow. 15 vols. Weed, Parson, Albany, New York.
- Brooks, S., and J. M. Suchey
- 1990 Skeletal Age Determination based on the Os Pubis: A Comparison of Acsádi-Nemeskéri and Suchey-Brooks Methods. *Human Evolution* 5(3):227–238.
- Broussal, G., G. Coeurdeuil, and O. Ouedraogo 1979 Genetic Structure of the Voltaic Population of the Mossi Plateau (Upper Volta). *Bulletin de la Societé de Pathologie Exotique et de ses Filiales* 72(4):368–374.

Browne, D. L.

1999 Across Class and Culture: Allison Davis and his Works. In *African American Pioneers in Anthropology*, edited by I. E. Harrison and F. V. Harrison, pp. 168–190. University of Illinois Press, Urbana.

- Buckley, R. N.
 - 1979 Slaves in Red Coats: The British West India Regiments, 1795–1815. Yale University Press, New Haven, Connecticut.
- Budd, P., J. Montgomery, A. Cox, P. Krause, B. Barreiro, and R. G. Thomas
 - 1998 The Distribution of Lead within Ancient and Modern Human Teeth: Implications for Long-term and Historical Exposure Monitoring. *Science of the Total Environment* 220:121–136.
- Budowle, B., M. R. Wilson, J. A. DiZinno, C. Stauffer, M. A. Fasano, M. M. Holland, and K. L. Monson
 - 1999 Mitochondrial DNA Regions HVI and HVII Population Data. *Forensic Science International* 103(1):23–35.
- Buikstra, J. E.
 - 1976 Hopewell in the Lower Illinois River Valley: A Regional Approach to the Study of Biological Variability and Mortuary Activity. Archeological Program Research Series Monograph No. 2. Northwestern University, Evanston, Illinois.
- Buikstra, J. E., and D. C. Cook
- 1980 Paleopathology: An American Account. *Annual Review of Anthropology* 9:433–470.
- Buikstra, J. E., and L. W. Konigsberg 1985 Paleodemography: Critiques and Controversies. *American Anthropologist* 87:316– 333.
- Buikstra, J. E., and D. H. Ubelaker (editors)
 1994 Standards for Data Collection from Human
 Skeletal Remains. Research Series No. 44.
 Arkansas Archaeological Survey, Fayetteville, Arkansas.
- Burman, M. S., and H. C. Clark
 - 1940 A Roentgenologic Study of the Hip Joint of the Infant in the First Twelve Months of Life. *American Journal of Roentgenology* 44(1):37–47.
- Burton, J. H., and T. D. Price
- 1990 The Ratio of Barium to Strontium as a Paleodietary Indicator of Consumption of Marine Resources. *Journal of Archaeological Science* 17:547–557.

- Burton, J. H., and L. E. Wright
 - 1995 Nonlinearity in the Relationship between Bone Sr/Ca and Diet: Paleodietary Implications. *American Journal of Physical Anthropology* 96:273–282.
- Buxton, L. H. D., J. C. Trevor, and A. H. Julien 1938 Skeletal Remains from the Virgin Islands. *Man* 38:49–51.
- Byers, S. N.
 - 2000 Testing Type II Error Rates in Biological Anthropology. *American Journal of Physical Anthropology* 111:283–290.
- Campana, S. E., A. J. Fowler, and C. M. Jones 1994 Otolith Elemental Fingerprinting for Stock Identification of Atlantic Cod (*Gadus morhua*) using Laser Ablation ICP-MS. *Canadian Journal of Fisheries and Aquatic Sciences* 51:1942–1950.
- Capasso, L., and G. DiTota
 - 1998 Fifth Toe Distal Inter-phalangeous Synostosis: Paleopathological Description and Possible Evolutionary Significance. *Anthropologie* 36(3):231–234.
- Capasso, L., K. A. R. Kennedy, and C. A. Wilczak 1999 *Atlas of Occupational Markers on Human Remains.* Edigrafital, Teramo, Italy.
- Carlson, S. J.
 - 1990 Vertebrate Dental Structures. In *Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends*, vol. 1, edited by J. G. Carter, pp. 531–556. Van Nostrand Reinhold, New York.
- Carlyle, S. W., R. L. Parr, M. G. Hayes, and D. H. O'Rourke
 - 2000 Context of Maternal Lineages in the Greater Southwest. *American Journal of Physical Anthropology* 113:85–101.
- Carrington, S. H. H.
- 2000 An Assessment of the Epidemiological and Demographic Issues involving Slave Societies in the Eighteenth Century. Unpublished manuscript on file, Department of History, Howard University, Washington, D.C.
- Carter, D. R., B. Miki, and K. Padian
- 1998 Epigenetic Mechanical Factors in the Evolution of Long Bone Epiphyses. *Zoological Journal of the Linnean Society* 123:163–178.

- Carter, D. R., M. C. H. van der Meullen, and G. S. Beaupré
 - 1996 Mechanical Factors in Bone Growth and Development. *Bone* 18(1):5S–10S.
- Carvalho-Silva, D. R., F. R. Santos, J. Rocha, and S. D. Pena
 - 2001 The Phylogeography of Brazilian Y-chromosome Lineages. *American Journal of Human Genetics* 68(1):281–286.
- Cavalli-Sforza, L. L., and M. W. Feldman 2003 The Application of Molecular Genetic Approaches to the Study of Human Evolu-

Approaches to the Study of Human Evolution. *Nature Genetics* 33 Supplement:266–275.

- Charles, D. K., K. Condon, J. M. Cheverud, and J. E. Buikstra
 - 1986 Cementum Annulation and Age Determination in *Homo sapiens*, I. Tooth Variability and Observer Error. *American Journal of Physical Anthropology* 71:311–320.
- Chen, B.-Y., and H. W. Janes
 - 2002 *PCR Cloning Protocol.* 2nd ed. Methods in Molecular Biology, vol. 192. Humana Press, Totowa, New Jersey.
- Chen, Y. S., A. Olckers, T. G. Schurr, A. M. Kogelnik, K. Huoponen, and D. C. Wallace 2000 mtDNA Variation in the South African Kung and Khwe and their Genetic Relationships to Other African Populations.

 *American Journal of Human Genetics 66(4):1362–1383.
- Chen, Y. S., A. Torroni, L. Excoffier, A. S. Santachiara-Benerecetti, and D. C. Wallace
 - 1995 Analysis of mtDNA Cariation in African Populations Reveals the Most Ancient of All Human Continent-Specific Haplogroups. *American Journal of Human Genetics* 57(1):133–149.
- Chilbeck, P. D., K. S. Davison, D. G. Sale, C. E. Webber, and R. A. Faulkner
 - 2000 Aspects of Physical Activity on Bone Mineral Density Assessed by Limb Dominance across the Lifespan. *American Journal of Human Biology* 12:633–637.
- Chima, S. C., C. F. Ryschkewitsch, K. J. Fan, and G. L. Stoner
 - 2000 JC Polyomavirus Genotypes in an Urban United States Population Reflect the His-

tory of African Origin and Genetic Admixture in Modern African Americans. *Human Biology* 72:837–850.

Ciminelli, B. M.

- 2002 Confirmation of the Potential Usefulness of Two Human Beta Globin Pseudogene Markers to Estimate Gene Flows to and from Sub-Saharan Africans. *Human Biology* 74:243–252.
- Cipollaro, M., G. Di Bernardo, G. Galano, U. Galderisi, F. Guarino, F. Angelini, and A. Cascino 1998 Ancient DNA in Human Bone Remains from Pompeii Archaeological Site. *Biochemical and Biophysical Research Communications* 247(3):901–904.
- Clarke, S. K.
 - 1982 The Association of Early Childhood Enamel Hypoplasias and Radiopaque Transverse Lines in a Culturally Diverse Prehistoric Skeletal Population. *Human Biology* 54(1):77–84.
- Cleymaet, R., P. Bottenberg, D. Slop, R. Clara, and D. Coomans
 - 1991 Study of Lead and Cadmium Content of Surface Enamel of Schoolchildren from an Industrial Area in Belgium. *Community Dentistry and Oral Epidemiology* 19:107– 111.
- Coale, A. J., and P. Demeny
 - 1966 Regional Model Life Tables and Stable Populations. Princeton University Press, Princeton, New Jersey.
- Cobb, W. M.
 - 1936 Race and Runners. *Journal of Health and Physical Education* 7:1–9.
 - 1939a Thomas Wingate Todd: An Appreciation. American Journal of Physical Anthropology Supplement 25:1–3.
 - 1939b The Negro as a Biological Element in the American Population. *Journal of Negro Education* 8:336–348.
 - 1939c The First Negro Medical Society: A History of the Medico-Chirurgical Society of the District of Columbia 1884–1939.
 Associated Publishers, Washington, D.C.
 - 1981 Chapter 3: The Journal Covers. *Journal of the National Medical Association* Supplement 73:1189–1209.

- Colden, Cadwallader
 - 1918–1937 Letters and Papers of Cadwallader Colden, 1711–1775, 9 vols. The John Watts De Peyster Publication Fund Series, vols. 50–56, 67–68. Collections of the New-York Historical Society. New-York Historical Society, New York.
- Collins-Schramm, H. E., R. A. Kittles, D. J. Operario, J. L. Weber, L. A. Criswell, R. S. Cooper, and M. F. Seldin
 - 2002 Markers that Discriminate between European and African Ancestry Show Limited Variation within Africa. *Human Genetics* 111(6):566–569.
- Condon, K. W., and J. C. Rose
 - 1992 Intertooth and Intratooth Variability in the Occurrence of Developmental Enamel Defects. *Journal of Paleopathology* 2:61–77.
- Condon, K. W., D. K. Charles, J. M. Cheverud, and J. E. Buikstra
 - 1986 Cementum Annulation and Age Determination in *Homo sapiens*, II. Estimates and Accuracy. *American Journal of Physical Anthropology* 71:321–330.
- Cook, K.
 - 1993 Black Bones, White Science: The Battle over New York's African Burial Ground. *Village Voice* 4 May:23–27. New York.
- Corporation of Trinity Church
 - 1969 Corporation of Trinity Church of Trinity Parish Church Total Alphabetical Population in the City of New York, 27th of October 1969.
- Corruccini, R. S., A. C. Aufderheide, J. S. Handler, and L. E. Wittmers, Jr.
 - 1987 Patterning of Skeletal Lead Content in Barbados Slaves. *Archaeometry* 29:233–239.
- Corruccini, R. S., J. S. Handler, and K. P. Jacobi 1985 Chronological Distribution of Enamel Hypoplasias and Weaning in a Caribbean Slave Population. *Human Biology* 57:669–711.
- Corruccini, R. S., J. S. Handler, R. J. Mutaw, and F. W. Lange
 - 1982 Osteology of a Slave Burial Population from Barbados, West Indies. *American Journal of Physical Anthropology* 59:443– 459.

- Corruccini, R. S., K. P, Jacobi, J. S. Handler, and A. C. Aufderheide
 - 1987 Implications of Tooth Root Hypercementosis in a Barbados Slave Skeletal Collection. American Journal of Physical Anthropology 74:179–184.
- Cox, A., F. Keenan, M. Cooke, and J. Appleton 1996 Trace Element Profiling of Dental Tissues using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. *Fresenius Journal of Analytical Chemistry* 354:254– 258.
- Cox, G., and J. Sealy
 - 1997 Investigating Identity and Life Histories: Isotopic Analysis and Historical Documentation of Slave Skeletons Found on the Cape Town Foreshore, South Africa. *International Journal of Historical Archaeology* 1(3):207–224.
- Cox, G., J. Sealy, C. Schrire, and A. Morris 2001 Stable Carbon and Nitrogen Isotopic Analyses of the Underclass at the Colonial Cape of Good Hope in the Eighteenth and Nineteenth Centuries. *World Archaeology* 33(1):73–97.
- Crist, T. A., R. H. Pitts, A. Washburn, J. P. McCarthy, D. G. Roberts, and M. Hickey
 - 1999 "A Distinct Church of the Lord Jesus":
 The History, Archaeology, and Physical
 Anthropology of the Tenth Street First African Baptist Church Cemetery, Philadelphia, Pennsylvania. Submitted to Gaudet & O'Brien/Urban Engineers and the Pennsylvania Department of Transportation.
 John Milner Associates, Inc., Philadelphia, Pennsylvania.
- Crosby, A. W.
 - 1986 Ecological Imperialism: The Biological Expansion of Europe, 900–1900. Cambridge University Press, New York.
- Crummell, A.
 - 1861 The Relations and Duties of the Free Colored Men in America to Africa. Case, Lockwood, Hartford, Conneticut.

- Cuellar-Ambrosi, F., M. C. Mondragon, M. Figueroa, C. Prehu, F. Galacteros, and A. Ruiz-Linares
 - 2000 Sickle Cell Anemia and Beta-globin Gene Cluster Haplotypes in Colombia. *Hemoglo-bin* 24(3):221–225.
- Currey, J. D., and G. Butler
 - 1975 The Mechanical Properties of Bone Tissue in Children. *Journal of Bone and Joint Surgery* 57A:810–814.
- Curry, L. P.
 - 1981 The Free Black in Urban America 1800–1850: The Shadow of the Dream. University of Chicago Press, Chicago.
- Curtin, P.
 - 1969 *The Atlantic Slave Trade: A Census*. University of Wisconsin Press, Madison.
- Curzon, M. E. J.
 - 1983 Introduction. In *Trace Elements and Dental Disease*, edited by M. E. J. Curzon and T. W. Cutress, pp. 1–9. John Wright, Boston, Massachusetts.
- Curzon, M. E. J., and T. W. Cutress (editors) 1983 *Trace Elements and Dental Disease*. John Wright, Boston, Massachusetts.
- Curzon, M. E. J., F. L. Losee, and A. S. Macalister 1975 Trace Elements in the Enamel of Teeth from New Zealand and the U.S.A. *New Zealand Dental Journal* 71:80–83.
- Dasch, E. J.
 - 1969 Strontium Isotopes in Weathering Profiles, Deep-Sea Sediments, and Sedimentary Rocks. *Geochimica et Cosmochimica Acta* 33:1521–1552.
- Davenport, C. B., and M. Steggerda
 - 1929 *Race Crossing in Jamaica*. Carnegie Institution, Washington, D.C.
- David, P. A., H. G. Gutman, R. Sutch, P. Temin, and G. Wright
 - 1976 Reckoning with Slavery: A Critical Study in the Quantitative History of American Negro Slavery. Oxford University Press, New York.
- Day, D. B.
 - 1932 A Study of Some Negro-White Families in the United States. Peabody Museum of Harvard University, Cambridge, Massachusetts.

- DeCorse, C. R.
 - 1999 Oceans Apart: Africanist Perspectives of Diaspora Archaeology. In *I, Too, Am America: Archaeological Studies of African American Life*, edited by T. Singleton, pp. 299–310. University Press of Virginia, Charlottesville.
 - 2001 An Archaeology of Elmina: Africans and Europeans on the Gold Coast, 1400–1900. Smithsonian Institution Press, Washington, D.C.
- Delany, M. R.
 - 1861 Official Report of the Niger Valley Exploring Party. T. Hamilton, New York.
- Demirjian, A.
 - 1986 Dentition. In *Postnatal Growth*, edited by F. Falkner and J. M. Tanner, pp. 269–298. Human Growth, 2nd ed., vol. 2. Plenum Press, New York.
- de Pablo R., J. M. Garcia-Pacheco, C. Vilches, M. E. Moreno, L. Sanz, M. C. Rementeria, S. Puente, and M. Kreisler
 - 1997 HLA Class I and Class II Allele Distribution in the Bubi Population from the Island of Bioko (Equatorial Guinea). *Tissue Antigens* 50(6):593–601.
- Derevenski, J. R. S.
 - 2000 Sex Differences in Activity-Related
 Osseous Change in the Spine and the
 Gendered Division of Labor at Ensay and
 Wharram Percy, UK. American Journal of
 Physical Anthropology 111:333–354.
- de Villiers, H.
 - 1968 The Skull of the South African Negro: A
 Biometrical and Morphological Study.
 Witwatersrand University Press, Johannesburg, South Africa.
- Diop, C. A.
 - 1974 *The African Origin of Civilization: Myth or Reality.* Translated by M. Cook. Lawrence Hill, New York.
- Diouf, S. A. (editor)
 - 2003 Fighting the Slave Trade: West African Strategies. Ohio University Press, Athens.
- Dittrick, J.
 - 1979 Sexual Dimorphism of the Femur and Humerus in Prehistoric Central California Skeletal Samples. Unpublished Master's

thesis, Department of Anthropology, California State University, Fullerton.

Douglass, F.

- 1854 [1950,1999] The Claims of the Negro Ethnologically Considered. Address delivered at Case Western Reserve College, July 12, 1854. *Frederick Douglass: Selected Speeches and Writings.* Philip S. Foner, editor, International Publishers, New York. Abridged and adapted by Yuval Taylor. Lawrence Hill Books, Chicago, 282–297.
 - 1854 The Claims of the Negro Ethnologically Considered: An Address before the Literary Society of Case Western Reserve College at Commencement, July 12, 1854. Lee, Mann, Rochester, New York. Daily American Office.
 - 1950 [1854] The Claims of the Negro Ethnologically Considered. In *The Life and Writings of Frederick Douglass*, edited by P. S. Foner, pp. 289–309. International Publishers, New York.

Drake, St. C.

- 1980 Anthropology and the Black Experience. *Black Scholar* 11:2–31.
- 1987 Black Folk Here and There: An Essay in History and Anthropology, vol. 1. Center for Afro-American Studies, University of California, Los Angeles.
- 1990 Black Folk Here and There: An Essay in History and Anthropology, vol. 2. Center for Afro-American Studies, University of California, Los Angeles.
- 1993 Diaspora Studies and Pan-Africanism. In *Global Dimensions of the African Diaspora*, edited by J. E. Harris, pp. 451–514. Howard University Press, Washington, D.C.
- Drake, St. C., and H. R. Clayton
 - 1945 Black Metropolis: A Study of Negro Life in a Northern City. Harcourt, Brace, New York.

Du Bois, W. E. B.

1899 *The Philadelphia Negro: A Social Study*. University of Pennsylvania Press, Philadelphia.

- 1903 *The Souls of Black Folk*. Bedford Books, Boston, Massachusetts.
- 1915 The Negro. Henry Holt, New York.

Duffy, J.

- 1953 *Epidemics in Colonial America*. Louisiana State University Press, Baton Rouge.
- 1968 A History of Public Health in New York City, 1625–1866. Russell Sage Foundation, New York.

Dutch Reformed Church

1727–1804 New York Burial Register. Transcript on file, New York Genealogical and Biographical Society, New York.

Eblen, J. E.

1979 New Estimates of the Vital Rates of the United States Black Population during the Nineteenth Century. In *Studies in American Historical Demography*, edited by M. A. Vinovskis, pp. 339–357. Academic Press, New York.

Edwards, G. F.

1968 E. Franklin Frazier on Race Relations. University of Chicago Press, Chicago.

Elia, R. J.

- 1991 Archaeological Excavations at the Uxbridge Almshouse Burial Ground in Uxbridge, Massachusetts. BAR International Series 564. Tempus Reparatum, Oxford, Great Britain.
- El-Najjar, M. Y., M. V. De Santi, and L. Ozebek 1978 Prevalence and Possible Etiology of Dental Enamel Hypoplasia. *American Journal of Physical Anthropology* 48(2):185–192.

Epperson, T. W.

- 1996 The Politics of "Race" and Cultural Identity at the African Burial Ground Excavations, New York City. World Archaeological Bulletin 7:108–117.
- 1999 The Contested Commons: Archaeologies of Race, Repression, and Resistance in New York City. In *Historical Archaeologies of Capitalism*, edited by M. P. Leone and P. B. Potter, Jr., pp. 81–110. Plenum, New York.

Ericson, J. E.

1985 Strontium Isotope Characterization in the Study of Prehistoric Human Ecology. *Journal of Human Evolution* 14:503–514.

1989 Some Problems and Potentials of Strontium Isotope Analysis for Human and Animal Ecology. In *Stable Isotopes in Ecological Research*, edited by P. W. Rundel, J. R. Ehleringer, and K. A. Nagy, pp. 252–259. Springer-Verlag, New York.

Estes, J. W.

1990 Dictionary of Protopharmacology: Therapeutic Practices, 1700–1850. Science History Publications, Canton, Massachusetts.

Evans, R. D., P. M. Outridge, and P. Richner 1994 Applications of Laser Ablation Inductively Coupled Plasma Mass Spectrometry to the Determination of Environmental Contaminants in Calcified Biological Structures. *Journal of Analytic Atomic Spectrometry* 9:985–989.

Evans, R. D., P. Richner, and P. M. Outridge 1995 Microspatial Variations of Heavy Metals in the Teeth of Walrus as Determined by Laser Ablation ICP-MS: The Potential for Reconstructing a History of Metal Exposure. Archives of Environmental Contamination and Toxicology 28:55–60.

Excoffier, L., and S. Schneider

1999 Why Hunter-Gatherer Populations Do Not Show Signs of Pleistocene Demographic Expansions. *Proceedings of the National Academy of Sciences of the United States of America* 96(19):10597–10602.

Ezzo, J. A.

1994a Zinc as a Paleodietary Indicator: An Issue of Theoretical Validity in Bone-Chemistry Analysis. *American Antiquity* 59:606–621.

1994b Putting the "Chemistry" Back in Archaeological Bone Chemistry Analysis: Modeling Potential Paleodietary Indicators. *Journal of Anthropological Archaeology* 13:1–34.

Falkner, F.

1966 *Human Development*. W. B. Saunders, Philadelphia, Pennsylvania.

Falomo, O. O.

2002 The Cusp of Carabelli: Frequency, Distribution, Size and Clinical Significance in Nigeria. *West African Journal of Medicine* 21(4):322–324.

Fazekas, I. G., and F. Kośa

1978 Forensic Fetal Osteology. Akadémiai Kiadó, Budapest, Hungary.

Ferguson, L.

1992 *Uncommon Ground: Archaeology and Early African America, 1650–1800.* Smithsonian Institution Press, Washington, D.C.

Fergusson, J. E., and N. G. Purchase

1987 Analysis and Levels of Lead in Human Teeth: A Review. *Environmental Pollution* 46:11–44.

Fields, S. J., M. Spiers, I. Hershkovits, and G. Livshits

1995 Reliability of Reliability Coefficients in the Estimation of Asymmetry. *American Journal of Physical Anthropology* 96:83–88.

Firmin, J.-A.

1885 *De l'égalité des races humaines: anthro*pologie positive. Translated by A. Charles. Garland, New York.

Flecker, H.

1942 Time of Appearance and Fusion of Ossification Centers as Observed by Roentgenographic Methods. *American Journal of Roentgenography and Radiation Therapy* 47:97–159.

Flores, C., N. Maca-Meyer, J. A. Perez, and V. M. Cabrera

2001 The Peopling of the Canary Islands: A CD4/Alu Microsatellite Haplotype Perspective. *Human Immunology* 62(9):949–953.

Fluehr-Lobban, C.

2000 Antenor Firmin: Haitian Pioneer of Anthropology. *American Anthropologist* 102:449–466.

Fogel, R. W., and S. L. Engerman

1974 Time on the Cross: The Economics of American Negro Slavery. Little, Brown, Boston, Massachusetts.

Foote, T.

1991 Black Life in Colonial Manhattan, 1664–1786. Ph.D. dissertation, Harvard University. University Microfilms, Ann Arbor, Michigan.

Foote, T. W., M. Carey, J. Giesenberg-Haag, J. Grey, K. McKoy, and C. Todd

1993 Report of the Site-Specific History of Block 154. Submitted to the African Burial

Ground Research Project. New York, August 25:11–12.

Forman, S. (editor)

1994 Diagnosing America: Anthropology and Public Engagement. University of Michigan Press, Ann Arbor.

Fowler, C.

1972 A Knot in the Thread: The Life and Work of Jacques Roumain. Howard University Press, Washington, D.C.

Fraginals, M. M.

1977 Africa in Cuba: A Quantitative Analysis of the African Population in the Island of Cuba. In *Comparative Perspectives on Slavery in the New World Plantation Societies*, edited by V. Rubin and A. Tuden, pp. 187–201. Annals of the New York Academy of Sciences, New York.

Franklin, J. H.

1947 From Slavery to Freedom: A History of Negro Americans. McGraw Hill, New York.

1967 From Slavery to Freedom: A History of Negro Americans. 3rd. ed. Alfred A. Knopf, New York.

Frazier, E. F.

1930 The Negro Slave Family. *Journal of Negro History* 15:198–259.

1939 *The Negro Family in the United States*. University of Chicago Press, Chicago.

Frost, H. M.

1985 The "New Bone": Some Anthropological Potentials. *Yearbook of Physical Anthropology* 28:211–226.

1998 Changing Concepts in Skeletal Physiology: Wolff's Law, the Mechanostat, and the "Utah Paradigm." *American Journal of Human Biology* 10:599–606.

1999 An Approach to Estimating Bone and Joint Loads and Muscle Strength in Living Subjects and Skeletal Remains. *American Journal of Human Biology* 11:437–458.

Fujii, K., and Y. Matsuura

1999 Analysis of the Velocity Curve for Height by the Wavelet Interpolation Method in Children Classified by Maturity Rate. *American Journal of Human Biology* 11:13–30. Galera, V., and M. D. Garralda

1993 Enthesopathies in a Spanish Medieval Population: Anthropological, Epidemiological, and Ethnohistorical Aspects. *International Journal of Anthropology* 8(4):247–258.

Garn, S. M.

1980 Human Growth. *Annual Review of Anthro- pology* 9:275–292.

Garn, S. M., K. Koski, and A. B. Lewis

1957 Problems in Determining the Tooth Eruption Sequence in Fossil and Modern Man. American Journal of Physical Anthropology 15:313–331.

Garn, S. M., C. G. Rohmann, and M. A. Guzmán 1966 Malnutrition and Skeletal Development in the Pre-school Child. *Yearbook of Physical Anthropology* 14:82–102.

Gates, H. L. A., and W. L. Andrews

1998 Pioneers of the Black Atlantic: Five Slave Narratives from the Enlightenment, 1772–1815. Harvard University Press, Cambridge, Massachusetts.

Gene, M., P. Moreno, N. Borrego, E. Pique, C. Brandt, J. Mas, M. Luna, J. Corbella, and E. Huguet

2001 The Bubi Population of Equatorial Guinea Characterized by HUMTH01, HUMVWA31A, HUMCSF1PO, HUMT-POX, D3S1358, D8S1179, D18S51 and D19S253 STR Polymorphisms. *International Journal of Legal Medicine* 114(4–5):298–300.

General Services Administration

1993 Foley Square Project, Federal Courthouse, and Federal Office Building, New York, New York. Comments on the Draft Research Design for Archaeological, Historical, and Bioanthropological Investigations of the African Burial Ground and Five Points Area, New York, New York.

Genovese, E. D.

1976 *Roll, Jordan, Roll: The World the Slaves Made.* Vintage Books, New York.

Gibbons, A.

1993 Geneticists Trace the DNA Trail of the First Americans. *Science* 259(5093):312–313.

1996 DNA Enters Dust Up Over Bones. *Science* 274(5285):172.

- Gilbert, C., J. Sealey, and A. Sillen
 - 1994 An Investigation of Barium, Calcium and Strontium as Paleodietary Indicators in the Southwestern Cape, South Africa. *Journal of Archaeological Sciences* 21:173–184.

Gilbert, S. F.

- 1992 Synthesizing Embryology and Genetics: Paradigms Regained. *American Journal of Human Genetics* 51:211–215.
- 1997 *Developmental Biology*. 7th ed. Sinauer Associates, Sunderland, Massachusetts.

Gillett, R. M.

- 1997 Dental Emergence among Urban Zambian School Children: An Assessment of the Accuracy of Three Methods in Assigning Ages. *American Journal of Physical Anthropology* 102:447–454.
- 1998 Permanent Tooth Emergence among Zambian Schoolchildren: A Standard for the Assignment of Ages. *American Journal of Human Biology* 10:45–52.
- Gladstone, M., Y. Lasne, L. Sann, and G. Putet 1998 Non-linear Patterns of Growth and Very Low Birth Weight Infants. *American Journal of Human Biology* 10:637–646.

Golden, M. H.

- 1988 The Role of Individual Nutrient Deficiencies in Growth Retardation of Children as Exemplified by Zinc and Protein. In *Linear Growth Retardation in Less Developed Countries*, edited by J. C. Waterlow, pp. 143–163. Raven Press, New York.
- Goldstein, S. J., and S. B. Jacobsen
 - 1988 Nd and Sr Isotopic Systematics of River Water Suspended Material: Implications for Crustal Evolution. *Earth and Planetary Science Letters* 87(3):249–265.

Gomez, M. A.

- 1998 Exchanging Our Country Marks: The Transformation of African Identities in the Colonial and Antebellum South. University of North Carolina Press, Chapel Hill.
- Goncalves, M. S., J. F. Nechtman, M. S. Figueiredo, J. Kerbauy, V. R. Arruda, M. F. Sonati, S. O. Saad, F. F. Costa, and T. A. Stoming
 - 1994 Sickle Cell Disease in a Brazilian Population from São Paulo: A Study of the Beta S Haplotypes. *Human Heredity* 44(6):322–327.

- Goode, H., T. Waldron, and J. Rogers
 - 1993 Bone Growth in Juveniles: A Methodological Note. *International Journal of Osteoarchaeology* 3:321–323.

Goode-Null, S. K.

2002 Slavery's Child: A Study of Growth and Childhood Sex Ratios in the New York African Burial Ground. Ph.D. dissertation, University of Massachusetts. University Microfilms, Ann Arbor, Michigan.

Goodfriend, J.

1992 Before the Melting Pot: Society and Culture in Colonial New York City,
1664–1730. Princeton University Press,
Princeton, New Jersey.

Goodman, A. H.

- 1992 Cartesian Reductionism and Vulgar
 Adaptationism: Issues in the Interpretation of Nutritional Status in Prehistory.
 Paper presented at the Southern Illinois
 State University Center for Archaeological
 Investigation Conference "Paleonutrition:
 The Diet and Health of Prehistoric Americans."
- 1993 On the Interpretation of Health from Skeletal Remains. *Current Anthropology* 34(3):281–288.
- 1997 Bred in the Bone? *The Sciences* 37 (March/April):20–25.
- 1998 The Biological Consequences of Inequality in Antiquity. In *Building a New Biocultural Synthesis: Political-Economic Perspectives on Human Biology*, edited by A. H. Goodman and T. L. Leatherman, pp. 147–169. University of Michigan Press, Ann Arbor.

Goodman, A. H., and G. J. Armelagos

- 1985a The Chronological Distribution of Enamel Hypoplasias: A Comparison of Permanent Incisor and Canine Patterns. *Archaeology of Oral Biology* 30:503–507.
- 1985b Factors Affecting the Distribution of Enamel Hypoplasias within the Human Permanent Dentition. *American Journal of Physical Anthropology* 68:479–493.
- 1988 Childhood Stress and Decreased Longevity in a Prehistoric Population. *American Anthropologist* 90:936–944.

- Goodman, A. H., G. J. Armelagos, and J. C. Rose 1980 Enamel Hypoplasias as Indicators of Stress in Three Prehistoric Populations from Illinois. *Human Biology* 52:515–528.
- Goodman, A. H., A. E. Dolphin, R. Klein, J. R. Backstrand, D. Amarasiriwardena, J. Reid, and P. Outridge
 - 2003 Tooth Rings: Dental Enamel as a Chronological Biomonitor of Elemental Absorption from Pregnancy to Adolescence. *Journal of Children's Health* 1:203–214.
- Goodman, A. H., and T. L. Leatherman
 1998 Building a New Biocultural Synthesis:
 Political-Economic Perspectives on
 Human Biology. University of Michigan
 Press, Ann Arbor.
- Goodman, A. H., D. L. Martin, and G. J. Armelagos 1985 Factors Affecting the Distribution of Enamel Hypoplasias within the Human Permanent Dentition. *American Journal of Physical Anthropology* 68:479–493.
- Goodman, A. H., D. L. Martin, G. J. Armelagos, and G. Clark
 - 1984 Indicators of Stress in Bones and Teeth. In *Paleopathology at the Origins of Agriculture*, edited by M. N. Cohen and G. J. Armelagos, pp. 13–49. Academic Press, Orlando, Florida.
- Goodman, A. H., D. L. Martin, C. P. Klein, M. S. Peele, N. A. Cruse, L. R. McEwen, A. Saeed, and B. M. Robinson
 - 1992 Cluster Bands, Wilson Bands and Pit Patches: Histological and Enamel Surface Indicators of Stress in the Black Mesa Anasazi Population. *Journal of Paleopathology* 2:115–127.
- Goodman, A. H., J. R. Reid, M. E. Mack, J. Jones, and C. Spaulding
 - 2000 Chemical Analyses of the Places of Birth and Migration of the Africans of Colonial New York. *American Journal of Physical Anthropology* Supplement 30:162.
- Goodman, A. H., and J. C. Rose
 1990 Assessment of Systemic Physiological
 Perturbations from Dental Enamel Hypoplasias and Associated Histological Structures. *Yearbook of Physical Anthropology*33:59–110.

- Goodman, A. H., and R. J. Song
 - 1999 Sources of Variation in Estimated Ages at Formation of Linear Enamel Hypoplasias. In *Human Growth in the Past: Studies from Bones and Teeth*, edited by R. D. Hoppa and C. FitzGerald, pp. 210–240. Cambridge University Press, New York.
- Goodman, A. H., R. B. Thomas, A. C. Swedlund, and G. J. Armelagos
 - 1988 Biocultural Perspectives on Stress in Prehistoric, Historical, and Contemporary Population Research. *Yearbook of Physical Anthropology* 31:169–202.
- Gould, A. R., A. G. Farman, and D. Corbitt 1984 Mutilations of the Dentition in Africa: A Review with Personal Observations. *Quintessence International* 15:89–94.
- Gould, S. J.
- 1996 *The Mismeasure of Man*. Rev. and expanded ed. Norton, New York.
- Grant, M.
 - 1916 The Passing of the Great Race; Or, the Racial Basis of European History. Scribner, New York.
- Graven, L., G. Passarino, O. Semino, P. Boursot, S. Santachiara-Benerecetti, A. Langaney, and L. Excoffier
 - 1995 Evolutionary Correlation between Control Region Sequence and Restriction Polymorphisms in the Mitochondrial Genome of a Large Senegalese Mandenka Sample.

 Molecular Biology and Evolution 2:334—345.
- Green, L. D., J. N. Derr, and A. Knight 2000 mtDNA Affinities of the Peoples of North-Central Mexico. *American Journal of Human Genetics* 66(3):989–998.
- Greene, D., D. P. Van Gerven, and G. J. Armelagos 1986 Life and Death in Ancient Populations: Bones of Contention in Paleodemography. *Human Evolution* 1:193–207.
- Greene, D. L.
 - 1972 Dental Anthropology of Early Egypt and Nubia. *Journal of Human Evolution* 1(3):315–324.
- Greene, L. J.
 - 1942 *The Negro in Colonial New England*1620–1776. Kennikat Press, Port Washington, New York.

- Greene, L. S.
 - 1993 G6PD Deficiency as Protection against Falciparum Malaria: An Epidemiological Critique of Population and Experimental Studies. *Yearbook of Physical Anthropol*ogy 36:153–178.

Greenhalgh, S.

1996 The Social Construction of Population Sciences: An Intellectual, Institutional, and Political History of Twentieth-Century Demography. *Comparative Studies in Society and History* 38(1):26–66.

University Press, Palo Alto, California.

Gruelich, W. W., and S. I. Pyle
1950 Radiographic Atlas of Skeletal Development of the Hand and Wrist. Stanford

Grupe, G.

- 1998 Archives of Childhood—the Research Potential of Trace Element Analyses of Ancient Human Dental Enamel. In *Dental Anthropology: Fundamentals, Limits, and Prospects*, edited by K. W. Alt, F. W. Rosing, and M. Teschler-Nicola, pp. 387–415. Springer-Verlag/Wien, New York.
- Guatelli-Steinberg, D., J. D. Irish, and J. R. Lukacs 2001 Canary Island–North African Population Affinities: Measures of Divergence based on Dental Morphology. *Homo* 52(2):173– 188.
- Guatelli-Steinberg, D., and J. R. Lukacs
 1999 Interpreting Sex Differences in Enamel
 Hypoplasia in Human and Non-human
 Primates: Developmental, Environmental,
 and Cultural Considerations. *Yearbook of Physical Anthropology* 42:73–126.
- Guiteras, P. J.
 - 1927 *Historia de la Isla de Cuba*. Cultural S.A., Havana, Cuba.
- Gulson, B. L., C. W. Jameson, and B. R. Gillings 1997 Stable Lead Isotopes in Teeth as Indicators of Past Domicile—a Potential New Tool in Forensic Science? *Journal of Forensic Science* 42(5):787–791.
- Gulson, B. L., and D. Wilson
 - 1994 History of Lead Exposure in Children Revealed from Isotopic Analyses of Teeth. *Archives of Environmental Health* 49:279–283.

- Guo, S. S., A. F. Roche, W. C. Chumlea, C. Johnson, R. J. Kuczmarski, and R. Curtin
 - 2000 Statistical Effects of Varying Sample Sizes on the Precision of Percentile Estimates. American Journal of Human Biology 12:64–74.
- Gupta, A., and J. Ferguson
 - 1992 Beyond "Culture": Space, Identity, and the Politics of Difference. *Cultural Anthropology* 7:6–23.
- Gustafson, B. E., and G. Koch
 - 1974 Age Estimation Up to 16 Years of Age based on Dental Development. *Odontologisk Revy* 25:297–306.
- Gutman, H. G.
 - 1975 Slavery and the Numbers Game: A Critique of Time on the Cross. University of Illinois Press, Urbana.
 - 1976 *The Black Family in Slavery and Freedom,* 1750–1925. Vintage Books, New York.
- Guy, H., C. Masset, and C. A. Baud 1997 Infant Taphonomy. *International Journal*
 - 1997 Infant Taphonomy. *International Journal of Osteoarchaeology* 7:221–229.
- Haack, K., S. Hummel, and B. Hummel 2000 Ancient DNA Fragments Longer than 300 bp. *Anthropologischer Anzeiger* 58(1):51–56.
- Haas, J.
 - 1994 Standards for Data Collection from Human Skeletal Remains: Proceedings of a Seminar at the Field Museum of Natural History. Research Series No. 44. Arkansas Archaeological Survey, Fayetteville.
- Haas, W. H., G. Bretzel, B. Amthor, K. Schilke, G. Krommes, S. Rusch-Gerdes, V. Sticht-Groh, and H. J. Bremer
 - 1997 Comparison of DNA Fingerprint Patterns of Isolates of *Mycobacterium africanum* from East and West Africa. *Journal of Clinical Microbiology* 35(3):663–666.
- Habermas, J.
 - 1975 *Legitimation Crisis*. Translated by Thomas McCarthy. Beacon Press, Boston, Massachusetts.
- Hägg, U., and J. Taranger
- 1980 Skeletal Stages of the Hand and Wrist as Indicators of the Pubertal Growth Spurt.

 Acta Odontologica Scandinavica 38:187—200.

- 1981 Dental Emergence Stages and the Pubertal Growth Spurt. *Acta Odontologica Scandinavica* 39:295–306.
- 1992 Pubertal Growth and Maturity Pattern in Early and Late Maturers. *Swedish Dental Journal* 16:199–209.

Hall, G. M.

1992 Africans in Colonial Louisiana: The Development of Afro-Creole Culture in the Eighteenth Century. Louisiana State University Press, Baton Rouge.

Hals, E., and K. A. Selvig

- 1977 Correlated Electron Probe Microanalysis and Microradiography of Carious and Normal Dental Cementum. *Caries Research* 11:62–75.
- Hamblin, M. T., E. E. Thompson, and A. Di Rienzo 2002 Complex Signatures of Natural Selection at the Duffy Blood Group Locus. *American Journal of Human Genetics* 70(2):369–383.
- Hammer, M. F., T. M. Karafet, A. J. Redd, H. Jarjanazi, S. Santachiara-Benerecetti, H. Soodyall, and S. L. Zegura
 - 2001 Hierarchical Patterns of Global Human Y-Chromosome Diversity. *Molecular Biology and Evolution* (7):1189–1203.

Handler, J. S.

- 1994 Determining African Birth from Skeletal Remains: A Note on Tooth Mutilation. *Historical Archaeology* 28(3):113–119.
- 1997 An African-Type Healer/Diviner and His Grave Goods: A Burial from a Plantation Slave Cemetery in Barbados, West Indies. *International Journal of Historical Archaeology* 1(2):91–130.

Handler, J. S., and R. S. Corruccini

- 1986 Weaning among West Indian Slaves: Historical and Bioanthropological Evidence from Barbados. *William and Mary Quarterly* 43:111–117.
- Handler, J. S., R. S. Corruccini, and R. J. Mutaw 1982 Tooth Mutilation in the Caribbean: Evidence from a Slave Burial Population in Barbados. *Journal of Human Evolution* 11:297–313.

Handler, J. S., and F. W. Lange

1978 Plantation Slavery in Barbados: An Archaeological and Historical Investiga*tion.* Harvard University Press, Cambridge, Massachusetts.

Harrington, S.

1993 Bones and Bureaucrats. *Archaeology* 6:28–38.

Harris, J. E.

1993 Global Dimensions of the African Diaspora. 2nd ed. Howard University Press, Washington, D.C.

Harrison, F. V.

1992 The Du Boisian Legacy in Anthropology. *Critical Anthropology* 12:239–260.

Hawkey, D. E.

1988 Use of the Upper Extremity Enthesopathies to Indicate Habitual Activity Patterns.
Unpublished Master's thesis, Department of Anthropology, Arizona State University, Tempe.

Hawkey, D. E., and C. F. Merbs

1995 Activity-Induced Musculoskeletal Stress Markers (MSM) and Subsistence Strategy Changes among Ancient Hudson Bay Eskimos. *International Journal of Osteoarchaeology* 5:324–338.

Hemenway, R. E.

1977 Zora Neale Hurston: A Literary Biography. University of Illinois Press, Urbana.

Herring, D. A., S. R. Saunders, and M. A. Katzenberg

1998 Investigating the Weaning Process in Past Populations. *American Journal of Physical Anthropology* 105:425–439.

Herrnstadt, C., J. L. Elson, E. Fahy, G. Preston, D. M. Turnbull, C. Anderson, S. S. Ghosh, J. M. Olefsky, M. F. Beal, R. E. Davis, and N. Howell 2002 Reduced-Median-Network Analysis of Complete Mitochondrial DNA Coding-Region Sequences for the Major African, Asian, and European Haplogroups. *American Journal of Human Genetics* 70(5):1152–1171.

Herskovits, M. J.

- 1928 The American Negro: A Study of Racial Crossing. A. A. Knopf, New York.
- 1930 The Negro in the New World: Statement of a Problem. *American Anthropologist* 32:145–156.
- 1941 *The Myth of the Negro Past*. Harper and Brothers, New York.

- Hewitt, R., A. Krause, A. Goldman, G. Campbell, and T. Jenkins
 - 1996 Beta-globin Haplotype Analysis Suggests that a Major Source of Malagasy Ancestry Is Derived from Bantu-speaking Negroids. *American Journal of Human Genetics* 58(6):1303–1308.
- Higgins, R. L., M. R. Haines, L. Walsh, and J. E. Sirianni
 - 2002 The Poor in the Mid-Nineteenth Century Northeast United States: Evidence from the Monroe County Almshouse, Rochester, New York. In *The Backbone of History*, edited by R. H. Steckel and J. C. Rose, pp. 162–184. Cambridge University Press, Cambridge, Great Britain.
- Higman, B. W.
 - 1979 Growth in Afro-Caribbean Slave Populations. *American Journal of Physical Anthropology* 50:373–386.
 - 1984 Slave Populations of the British Caribbean, 1807–1834. Johns Hopkins University Press, Baltimore, Maryland.
 - 1991 Household Structure and Fertility on Jamaican Slave Plantations: A Nineteenth-Century Example. In *Caribbean Slave Society and Economy*, edited by H. Beckles and V. Shepherd, pp. 527–550. New Press, New York.
- Hill, M. C., M. L. Blakey, and M. E. Mack
 1995 Women, Endurance, Enslavement: Exceeding the Physiological Limits. *American Journal of Physical Anthropology* Supplement 20:110–111.
- Hillson, S. W.
 - 1996 *Dental Anthropology*. Cambridge University Press, Cambridge, Great Britain.
- Himes, J. H.
 - 1999 Maturation-Related Deviations and Misclassification of Stature and Weight in Adolescence. *American Journal of Human Biology* 11:499–504.
- Hodges, D. C., and L. M. Schell 1988 Power Analysis in Biological Anthropology. *American Journal of Physical Anthro*pology 77:175–181.
- Hoffman, J. M.
 - 1979 Age Estimations from Diaphyseal Lengths: Ten Months to Twelve Years. *Journal of Forensic Science* 24(2):461–469.

- Holl, A. F. C.
 - 1995 African History: Past, Present, and Future; the Unending Quest for Alternatives. In *Making Alternative Histories*, edited by P. R. Schmidt and T. C. Patterson, pp. 183–211. School of American Research Press, Santa Fe, New Mexico.
 - 2000 Toward an Archaeology of Urban Slavery: The Spatial Analysis of the New York African Burial Ground (ca. 1650–1796).
 Department of Anthropology, University of California, San Diego, La Jolla.
 - 2002 Toward an Archaeology of Urban Slavery: The Spatial Analysis of the New York African Burial Ground (ca. 1650–1796).

 Department of Anthropology, University of California, La Jolla. Unpublished manuscript on file in the archives of the New York African Burial Ground Project.

Hooton, E. A.

- 1930 The Indians of Pecos Pueblo: A Study of their Skeletal Remains. Yale University Press, New Haven, Connecticut.
- 1939 *Crime and Man*. Harvard University Press, Cambridge, Massachusetts.
- Hoppa, R. D.
 - 1992 Evaluating Human Skeletal Growth: An Anglo-Saxon Example. *International Journal of Osteoarchaeology* 2:275–288.
 - 2000 Variation in Osteological Aging Criteria: An Example from the Pubic Symphysis. *American Journal of Physical Anthropology* 11:185–191.
- Hoppa, R. D., and C. M. FitzGerald
 - 1999 From Head to Toe: Integrating Studies from Bones and Teeth in Biological Anthropology. In *Human Growth in the Past: Studies from Bones and Teeth*, edited by R. D. Hoppa and C. M. FitzGerald, pp. 1–30. Cambridge University Press, Cambridge, Great Britain.
- Hoppa, R. D., and K. L. Gruspier
- 1996 Estimating Diaphyseal Length from Fragmentary Subadult Skeletal Remains: Implications for Paleodemographic Reconstructions of a Southern Ontario Ossuary. *American Journal of Physical Anthropology* 100:341–354.

- Höss, M., and S. Pääbo
 - 1993 DNA Extraction from Pleistocene Bones by a Silica-Based Purification Method. *Nucleic Acids Research* 21(16):3913–3914.
- Howard University and John Milner Associates
 1993 Research Design for Archaeological,
 Historical, and Bioanthropological Investigations of the African Burial Ground
 (Broadway Block). Howard University and John Milner Associates, New York.

Howells, W. W.

- 1973 Cranial Variation in Man: A Study by Multivariate Analysis of Patterns of Difference among Recent Human Populations. Papers of the Peabody Museum of Archaeology and Ethnology Vol. 67. Harvard University, Cambridge, Massachusetts.
- Howson, J. E., S. Goode-Null, M. L. Blakey, E. Brown, and L. M. Rankin-Hill
 - 2000 Political Economy of Forced Migration and Sex Ratio. Paper presented at the 69th Annual Meeting of the American Association of Physical Anthropologists, San Antonio, Texas.

Hrdlička, A.

- 1918 Physical Anthropology: Its Scope and Aims, its History and Present Status in America. *American Journal of Physical Anthropology* 1:3–34.
- 1925 *The Old Americans*. Williams and Wilkins, Baltimore, Maryland.
- 1927 Anthropology and the Negro: Historical Notes. *American Journal of Physical Anthropology* 10:205–235.
- 1928 The Full-Blood American Negro. *American Journal of Physical Anthropology* 12:15–30.
- Huggare, J., and O. Rönning
 - 1995 Growth of the Cranial Vault: Influence of Intracranial and Extracranial Pressures.

 Acta Odontologica Scandinavica 53:192–195.
- Huh, Y., and J. M. Edmond
- 1996 The Isotopic Systematics of Fluvial Sr; New Results from the Big Rivers of Eastern Siberia. *EOS: Transactions of the American Geophysical Union* 77:325.

- Hummel, S., and B. Herrmann
 - 1997 Determination of Kinship by aDNA Analysis. *Anthropologischer Anzeiger* 55(2):217–223.
- Hummel, S., G. Nordsiek, J. Rameckers, C. Lassen,
 H. Zierdt, H. Baron, and B. Herrmann
 1995 aDNA—a New Approach to Old Questions. Zeitschrift für Morphologie und
 Anthropologie 81(1):41–65.
- Hummert, J. R., and D. P. Van Gerven
 - 1983 Skeletal Growth in a Medieval Population from Sudanese Nubia. *American Journal of Physical Anthropology* 60:471–478.
- Humphrey, L. T.
 - 1998 Growth Patterns in the Modern Human Skeleton. *American Journal of Physical Anthropology* 105:57–72.
- Hunt, E. E., Jr., and I. Gleiser
 - 1955 The Estimation of Age and Sex of Preadolescent Children from Bones and Teeth. *American Journal of Physical Anthropology* 13:479–497.
- Huss-Ashmore, R., A. H. Goodman, and G. J. Armelagos
 - 1982 Nutritional Inference from Paleopathology. *Advances in Archaeological Method and Theory* 5:395–474.
- Hutchinson, H. W.
 - 1957 Village and Plantation Life in Northeastern Brazil. University of Washington Press, Seattle.
- Hutchinson, J.
 - 1987 The Age-Sex Structure of the Slave Populations in Harris County, Texas: 1850–1860. *American Journal of Physical Anthropology* 74:231–238.
- Ikehara-Quebral, R., and M. T. Douglas
 1997 Cultural Alteration of Human Teeth in
 the Mariana Islands. *American Journal of Physical Anthropology* 104:381–391.
- Ingle, M., J. E. Howson, and R. S. Edward
 1990 A Stage IA Cultural Resource Survey of
 the Proposed Foley Square Project in the
 Borough of Manhattan, New York, New
 York. Edwards and Kelcey Engineers,
 the General Services Administration, and
 Historic Conservation and Interpretation.

Newton, New Jersey.

- Ingman, M., H. Kaessmann, S. Paabo, and U. Gyllensten
 - 2000 Mitochondrial Genome Variation and the Origin of Modern Humans. *Nature* 408(6813):708–713.
- Inoue, N., R. Sakashita, M. Inoue, T. Kamegai, K. Ohashi, and M. Katsivo
 - 1995 Ritual Ablation of Front Teeth in Modern and Recent Kenyans. *Anthropological Science* 103(3):263–277.
- Inoue, N., R. Sakashita, N. Tadashige, and T. Kamegai
 - 1992 A Preliminary Report on Ritual Ablation of Anterior Teeth in Modern Kenyans. *Journal of the Anthropological Society of Nippon* 100(1):119–123.
- Irish, J. D.
 - 1993 Biological Affinities of Late Pleistocene through Modern African Aboriginal Populations: The Dental Evidence. Unpublished Ph.D. dissertation, Department of Anthropology, Arizona State University, Tempe.
 - 1997 Characteristic High- and Low-Frequency Dental Traits in Sub-Saharan African Populations. *American Journal of Physical Anthropology* 102:455–467.
 - 1998 Ancestral Dental Traits in Recent Sub-Saharan Africans and the Origins of Modern Humans. *Journal of Human Evolution* 34(1):81–98.
- İşcan, M. Y., S. R. Loth, and R. K. Wright 1984a Age Estimation from the Rib by Phase Analysis: White Males. *Journal of Forensic Science* 29(4):1094–1104.
 - 1984b Metamorphosis at the Sternal Rib End: A New Method to Estimate Age at Death in White Males. *American Journal of Physical Anthropology* 65:147–156.

Ivanhoe, F.

- 1994 Osteometric Scoring of Adult Residual Rickets Skeletal Plasticity in Two Archaeological Populations from Southeastern England: Relationships to Sunshine and Calcium Deficits and Demographic Stress.

 International Journal of Osteoarchaeology 4(2):97–120.
- Jackson, F. L. C.
 - 1997 Concerns and Priorities in Genetic Studies: Insights from Recent African Ameri-

- can Biohistory. *Seton Hall Law Review* 27:951–970.
- Jacobi, K. P., D. C. Cook, R. S. Corruccini, and J. S. Handler
 - 1992 Congenital Syphilis in the Past: Slaves at Newton Plantation, Barbados, West Indies. American Journal of Physical Anthropology 89:145–158.

Jacobs, H. A.

- 2001 [1861] Incidents in the Life of a Slave
 Girl, edited by L. M. Francis. Published
 for the author, Boston, Massachusetts.
 Reprinted as Incidents in the Life of a
 Slave Girl: Contexts, Criticisms, edited by
 N. Y. McKay and F. S. Foster. Norton, New
 York.
- Jantz, L. M., and R. L. Jantz
 - 1999 Secular Change in Long Bone Length and Proportion in the United States, 1800–1970. *American Journal of Physical Anthropology* 110:57–68.
- Jantz, R. L., and D. W. Owsley
 - 1984 Long Bone Growth Variation among Arikara Skeletal Populations. *Ameri*can Journal of Physical Anthropology 63:13–20.
- Johansson, S. R., and S. Horowitz
- 1986 Estimating Mortality in Skeletal Populations: Influences of the Growth Rate on the Interpretations of Levels and Trends. *American Journal of Physical Anthropology* 71:233–250.
- Johnston, F. E.
 - 1961 Sequence of Epiphyseal Union in a Prehistoric Kentucky Population from Indian Knoll. *Human Biology* 33:66–81.
 - 1962 Growth of the Long Bones of Infants and Young Children at Indian Knoll. *American* Journal of Physical Anthropology 20:249– 254
 - 1969 Approaches to the Study of Developmental Variability in Human Skeletal Populations. American Journal of Physical Anthropology 31:335–341.
- Johnston, F. E., and C. E. Snow
- 1961 The Reassessment of the Age and Sex of the Indian Knoll Skeletal Population:
 Demographic and Methodological Aspects.

American Journal of Physical Anthropology 19:237–244.

Johnston, F. E., and L. O. Zimmer

1989 Assessment of Growth and Age in the Immature Skeleton. In *Reconstruction of Life from the Skeleton*, edited by M. Y. İşcan and K. A. R. Kennedy, pp. 11–22. Alan R. Liss, New York.

Jones, A.

1992 Tooth Mutilation in Angola. *British Dental Journal* 173:177–179.

Jones, D. G.

1990 Preliminary Excavations at a Burial Ground at Galways Plantation, Montserrat, West Indies. Department of Archaeology, Boston University, Boston, Massachusetts.

Jordan, W. D.

1968 White Over Black: American Attitudes toward the Negro, 1550–1812. Norton, New York.

Jorde, L. B., W. S. Watkins, M. J. Bamshad, M. E. Dixon, C. E. Ricker, M.T. Seielstad, and M. A. Batzer

2000 The Distribution of Human Genetic Diversity: A Comparison of Mitochondrial, Autosomal, and Y-Chromosome Data.

American Journal of Human Genetics 66(3):979–988.

Jorde, P. K.

1993 Memorialization of The African Burial
Ground: Federal Steering Committee
Recommendations to the Administrator,
General Services Administration and The
United States Congress. New York. August
6.

Jurmain, R.

1990 Paleoepidemiology of a Central California Prehistoric Population from CA-Ala-329: Dental Disease. *American Journal of Physical Anthropology* 81:333–342.

1999 Stories from the Skeleton: Behavioral Reconstruction in Human Osteology. Gordon and Breach, Amsterdam, The Netherlands.

2001 Paleoepidemiological Patterns of Trauma in a Prehistoric Population from Central California. American Journal of Physical Anthropology 115:13–23. Jurmain, R., L. Kilgore, W. Trevathan, and H. Nelson

2003 *Introduction to Physical Anthropology*. 9th ed. Wadsworth, Belmont, California.

Kagerer, P., and G. Grupe

2001 Age-at-Death Diagnosis and Determination of Life-History Parameters by Incremental Lines in Human Dental Cementum as an Identification Aid. *Forensic Science International* 18:75–82.

Karasik, D., I. Otremski, I. Barach, K. Yakovenko, V. Batsevitch, O. Pavlovsky, E. Kobyliansky, and G. Livshits

1999 Comparative Analysis of Age Prediction by Markers of Bone Change in the Hand Assessed by Roentgenography. *American Journal of Human Biology* 11:31–44.

Karol, L. A.

1997 Rotational Deformities in the Lower Extremities. *Current Opinion in Pediatrics* 9:77–80.

Katz, D., and J. M. Suchey

1986 Age Determination of the Male Os Pubis. *American Journal of Physical Anthropology* 69:427–435.

1989 Race Differences in Pubic Symphyseal Aging Patterns in the Male. *American Journal of Physical Anthropology* 80:167–172.

Katzenberg, M. A., D. A. Herring, and S. R. Saunders

1996 Weaning and Infant Mortality: Evaluating the Skeletal Evidence. *Yearbook of Physical Anthropology* 39:177–199.

Katzenberg, M. A., S. R. Saunders, and W. R. Fitzgerald

1993 Age Differences in Stable Carbon and Nitrogen Isotope Ratios in a Population of Prehistoric Maize Horticulturalists. *American Journal of Physical Anthropology* 90:267–282.

Kayser, M., S. Brauer, H. Schädlich, M. Prinz, M. A. Batzer, P. A. Zimmerman, B. A. Boatin, and M. Stoneking

2003 Y Chromosome STR Haplotypes and the Genetic Structure of U.S. Populations of African, European, and Hispanic Ancestry. *Genome Research* 13(4):624–634.

- Keclard, L., V. Ollendorf, C. Berchel, H. Loret, and G. Merault
 - 1996 Beta S Haplotypes, Alpha-globin Gene Status, and Hematological Data of Sickle Cell Disease Patients in Guadeloupe (F.W.I.). *Hemoglobin* 20(1):63–74.
- Kelley, J. O., and J. L. Angel
 - 1983 The Workers of Catoctin Furnace. *Maryland Archeology* 19(1):2–17.
 - 1987 Life Stresses of Slavery. *American Journal of Physical Anthropology* 74:199–211.

Kennedy, K. A. R.

1989 Skeletal Markers of Occupational Stress. In *Reconstruction of Life from the Skeleton*, edited by M. Y. İşcan and K. A. R. Kennedy, pp. 129–160. Alan R. Liss, New York.

Khudabux, M. R.

- 1989 Signs of Physical Strain as Indications of Health Status during Growth in a Negro Slave Population in Surinam (S.A.). In *Advances in Paleopathology*, edited by L. Capasso, S. Carmiello, and G. Di Tota, pp. 131–134. Journal of Paleopathology Monographic Publication No. 1. Cheiti, Italy.
- 1991 Effects of Life Conditions on the Health of a Negro Slave Community in Suriname.
 Rijksuniversiteit te Leiden, Leiden, The Netherlands.

King, W.

1995 Stolen Childhood: Slave Youth in Nineteenth-Century America. Indiana University Press, Bloomington.

Kiple, K. F., and V. H. King

1981 Another Dimension to the Black Diaspora: Diet, Disease, and Racism. Cambridge University Press, Cambridge, Great Britain.

Kiple, K. F., and V. H. Kiple

- 1977 Slave Child Mortality: Some Nutritional Answers to a Perennial Puzzle. *Journal of Social History* 10:284–309.
- 1980 The African Connection: Slavery, Disease and Racism. *Phylon* 41:211–222.
- Kister, J., C. Prehu, J. Riou, C. Godart, J. Bardakdjian, D. Prome, F. Galacteros, and H. Wajcman
 - 1999 Two Hemoglobin Variants with an Alteration of the Oxygen-Linked Chloride

- Binding: Hb Antananarivo [α1(NA1) Val—>Gly] and Hb Barbizon [β144(HC1) Lys—>Met]. *Hemoglobin* 23(1):21–32.
- Kittles, R. A., G. Morris, M. George, G. Dunston, M. Mack, F. L. C. Jackson, S. O. Y. Keita, and M. Blakey
 - 1999 Genetic Variation and Affinities in the New York Burial Ground of Enslaved Africans. American Journal of Physical Anthropology Supplement 28:170 (abstract).

Kjaer, I.

1995 Human Prenatal Craniofacial Development Related to Brain Development under Normal and Pathological Conditions. *Acta Odontologica Scandinavica* 53:135–143.

Klein, H. S.

1986 African Slavery in Latin America and the Caribbean. Oxford University Press, Oxford, Great Britain.

Knight, F. W., and P. K. Liss (editors)

1991 Atlantic Port Cities: Economy, Culture, and Society in the Atlantic World, 1650–1850. University of Tennessee Press, Knoxville.

Knodel, J., and H. Kintner

1977 The Impact of Breast Feeding Patterns on the Biometric Analysis of Infant Mortality. *Demography* 14(4):391–409.

Knüsel, C.

2000 Bone Adaptation and its Relationship to Physical Activity in the Past. In *Human Osteology in Archaeology and Forensic Science*, edited by M. Cox and S. Mays, pp. 381–400. Greenwich Medical Media, London, Great Britain.

Kohn, M. J.

1999 You Are What You Eat. *Science* 283:335–336.

Kolman, C. J., and N. Tuross

2000 Ancient DNA Analysis of Human Populations. *American Journal of Physical Anthropology* 111:5–23.

Konigsberg, L. W., S. M. Henss, L. M. Jantz, and W. L. Jungers

1998 Stature Estimation and Calibration: Bayesian and Maximum Likelihood Perspectives in Physical Anthropology. *Yearbook of Physical Anthropology* 41:65–92.

Konstantopoulos, K., T. Vulliamy, D. Swirsky, J. D. Reeves, J. Kaeda, and L. Luzzatto

1996 DNA Haplotypes in Africans and West Indians with Sickle Cell Anemia or SC Disease. *Gene Geography* 10(1):19–24.

Koo, K. S.

2007 Strangers in the House of God: Cotton Mather, Onesimus, and an Experiment in Christian Slaveholding. *Proceedings of the American Antiquarian Society* 117(1):143– 175.

Koziel, S. M.

1997 Combined Effects of the Tempo of Maturation and Mid-parent Height on the Shape of Individual Growth Curves. *American Journal of Human Biology* 9:555–564.

Kreshover, S. J.

1960 Metabolic Disturbance in Tooth Formation. Annals of the New York Academy of Sciences 85:161–167.

Krogman, W. M.

1962a [1955] Aging Human Skeletal Remains. *Journal for Science* 7:3.

1962b *The Human Skeleton in Forensic Medicine*. Charles C Thomas, Springfield, Illinois.

Kruger, V. L.

1985 Born to Run: The Slave Family in Early New York, 1626–1827. Ph.D. dissertation, Columbia University, New York. University Microfilms, Ann Arbor, Michigan.

Kutz Television, Inc.

1994 The African Burial Ground: An American Discovery. Parts I–IV. VHS. Written by Christopher Moore and directed by Anna Switzer. National Technical Information Services, National Audiovisual Center, Springfield, Virginia.

Lampl, M., and F. E. Johnston

1996 Problems in the Aging of Skeletal Juveniles: Perspectives from Maturation
Assessments of Living Children. *American Journal of Physical Anthropology* 101:345–355.

Lang, S. S.

1997 Cornell Nutritionists Help Establish New International Growth References. *Human Ecology Forum* 25(4):2.

Lanphear, B. P., M. Weitzman, and S. Eberly 1996 Racial Differences in Urban Children's Environmental Exposures to Lead. *Ameri*- can Journal of Public Health 86(10):1460–1463.

Lanphear, K. M.

1988 Mortality and Health in a Nineteenth Century Poorhouse Skeletal Sample. Unpublished Ph.D. dissertation, Department of Anthropology, State University of New York at Albany.

Lapoumeroulie, C.

1992 A Novel Sickle Cell Mutation of Yet Another Origin in Africa: The Cameroon Type. *Human Genetics* 89(3):333–337.

La Roche, C. J., and M. L. Blakey

1997 Seizing Intellectual Power: The Dialogue at the New York African Burial Ground. *Historical Archaeology* 31(3):84–106.

Larsen, C. S.

1997 Bioarchaeology: Interpreting Behavior from the Human Skeleton. Cambridge University Press, New York.

Lassen, C., S. Hummel, and B. Herrmann
1997 Molecular Sex Determination in Skeletal Remains of Premature and Newborn
Infants of the Aegerten, Switzerland,
Burial Field. Anthropologischer Anzeiger

55(2):183–191.

2000 Molecular Sex Identification of Stillborn and Neonate Individuals ("Traufkinder") from the Burial Site Aegerten. *Anthropologischer Anzeiger* 58(1):1–8.

Lee, K. M., J. Appleton, M. Cooke, F. Keenan, and K. Sawicka-Kapusta

1999 Use of Laser Ablation Inductively Coupled Plasma Mass Spectrometry to Provide Element Versus Time Profiles in Teeth. *Analytica Chimica Acta* 395:179–185.

Levy, L. F.

1968 Porter's Neck. *British Medical Journal* 2(5596):16–19.

Lewis, A. B., and S. M. Garn

1960 The Relationship between Tooth Formation and Other Maturational Factors. *Angle Orthodontist* 30:70–77.

Lignitz, H.

1919–1920 Die künstlichen Zahnverstümmlungen in Afrika im Lichte der Kulturkreisforschung. *Anthropos* 14–15:891–943.

- Liversidge, H. M.
 - 1994 Accuracy of Age Estimation from Developing Teeth in a Population of Known Age (0–5.4 Years). *International Journal of Osteoarchaeology* 4:37–45.
- Livshits, G., K. Yakovenko, L. Kletselman, D. Karasik, and E. Kobyliansky
 - 1998 Fluctuating Asymmetry and Morphometric Variation of Hand Bones. *American Journal of Physical Anthropology* 107:125–136.
- Lochner, F., J. Appleton, F. Keenan, and M. Cooke 1999 Multi-element Profiling of Human Deciduous Teeth by Laser Ablation–Inductively Coupled Plasma-Mass Spectrometry. *Analytica Chimica Acta* 401:299–306.

Long Papers

- n.d. Archived material. Add Ms. 18,273, folio 131.
- Lorenz, J., A. Vosbikian, J. Beck, P. Bender, A. Whittemore, and F. Jackson
 - 2004 African-American Lineage Markers:
 Determining the Geographic Source of
 mtDNA and Y Chromosomes. Paper presented at the 73rd Annual Meeting of the
 American Association of Physical Anthropologists, Tampa, Florida.
- Lovejoy, C. O., R. S. Meindl, T. R. Pryzbeck, and R. P. Menforth
 - 1985 Chronological Metamorphosis of the Auricular Surface of the Ilium: A New Method for the Determination of Adult Skeletal Age at Death. *American Journal of Physical Anthropology* 68:15–28.
- Lovejoy, C. O., R. P. Mensforth, and G. J. Armelagos
 - 1982 Five Decades of Skeletal Biology as Reflected in the *American Journal of Physical Anthropology*. In *A History of American Physical Anthropology*, 1930– 1980, edited by F. Spencer, pp. 239–236. Academic Press, New York.

Lovejoy, P. E.

1997 The African Diaspora: Revisionist Interpretations of Ethnicity, Culture and Religion under Slavery. *Studies in the World History of Slavery, Abolition and Emancipation* II:1.

- 2003 Transatlantic Narratives: The Impact of Transatlantic Slavery on the Lives of Two Muslims: Muhammad Kaba Saghanaghu and Mahommah Gardo Baquaqua. Paper presented at the Literary Manifestations of the African Diaspora Conference, University of Cape Coast, Ghana.
- Lovell, N. C.
 - 1994 Spinal Arthritis and Physical Stress at Bronze Age Harappa. *American Journal of Physical Anthropology* 93:149–164.
- Luis, J. R., S. Dios, J. C. Carril, R. Herrera, and B. Caeiro
 - 2002 New STR at the D5S373 Locus and its Relevance in Human Population Studies. *American Journal of Human Biology* 14(3):347–350.
- Lukacs, J. R.
 - 1989 Dental Paleopathology: Methods for Reconstructing Dietary Patterns. In *Reconstruction of Life from the Skeleton*, edited by M. Y. İşcan and K. A. R. Kennedy, pp. 261–286. Alan R. Liss, New York.
- Lydon, J. G.
 - 1978 New York and the Slave Trade, 1700 to 1774. William and Mary Quarterly 35(2):375–394.
- Mack, M. E., and M. L. Blakey
 - 2004 The New York African Burial Ground Project: Past Biases, Current Dilemmas and Future Research Opportunities. *Historical Archaeology* 38(1):10–17.
- Mack, M. E., M. L. Blakey, and A. H. Goodman 2000 Dental Evidence of Health in African-Born and American-Born Children. *American Journal of Physical Anthropology* Supplement 30:184.
- Mack, M. E., C. M. Hill, and M. L. Blakey
 1995 Preliminary Analysis of Skeletal Remains
 from the New York African Burial Ground.
 Paper presented at the 94th Annual Meeting of the American Anthropological Association, Washington, D.C.
- Mandel, I. D.
 - 1979 Dental Caries. *American Scientist* 67:680–688.
- Mange, A. P., and E. J. Mange
 - 1988 *Genetics: Human Aspects*. 2nd ed. Sinauer Associates, Sunderland, Massachusetts.

- Mann, A., M. Lampl, and J. Monge
 - 1990 Patterns of Ontogeny in Human Evolution: Evidence from Dental Development. *Yearbook of Physical Anthropology* 33:111–150.
- Mann, K., and R. Roberts (editors)
 - 1991 *Law in Colonial Africa*. Heinemann Educational Books, Portsmouth, New Hampshire.
- Mann, R. W., and J. Krakker
 - 1989 A Black Skeletal Sample from a Washington, D.C. Cemetery in the Context of Nineteenth Century Urban Growth. *Tennessee Anthropologist* 14:1–32.
- Mann, R. W., L. Meadows, W. M. Bass, and D. R. Watters
 - 1987 Skeletal Remains from a Black Slave Cemetery, Montserrat, West Indies. *Annals of the Carnegie Museum* 56:319–336.
- Mansilla, J., and C. M. Pijoan
 - 1995 Brief Communication: A Case of Congenital Syphilis during the Colonial Period in Mexico City. *American Journal of Physical Anthropology* 97:187–196.
- Maples, W. R.
 - 1986 Trauma Analysis by the Forensic Anthropologist. In *Forensic Osteology: Advances in the Identification of Human Remains*, edited by K. Reichs, pp. 218–228. Charles C Thomas, Springfield, Illinois.
- Marcus, R.
 - 1996 Endogenous and Nutritional Factors affecting Bone. *Bone* 18S:11S–13S.
- Maresh, M. M.
 - 1955 Linear Growth in Long Bones of Extremities from Infancy through Adolescence.

 *American Journal of Diseases of Children 89:735–742.
 - 1970 Measurements from Roentgenograms. In *Human Growth and Development*, edited by R. W. McCammon, pp. 157–199.Charles C Thomas, Springfield, Illinois.
- Margo, R. A., and R. H. Steckel
 - 1983 Heights of Native-Born Whites during the Antebellum Period. *Journal of Economic History* 43:167–174.

- Marks, M. K., J. C. Rose, and W. D. Davenport, Jr. 1996 Technical Note: Thin Section Procedure for Enamel Histology. *American Journal of Physical Anthropology* 99:493–498.
- Martin, D. L., A. L. Magennis, and J. C. Rose 1987 Cortical Bone Maintenance in an Historic Afro-American Cemetery Sample from Cedar Grove, Arkansas. *American Journal* of Physical Anthropology 74:255–264.
- Marquez-Morfin, L.
 - 1998 Unequal Death in Life: A Sociopolitical Analysis of the 1813 Mexico City Typhus Epidemic. In *Toward a New Biocultural Synthesis*, edited by A. H. Goodman and T. L. Leatherman, pp. 229–243. University of Michigan Press, Ann Arbor.
- Martinson, J. J., L. Excoffier, C. Swinburn, A. J. Boyce, R. M. Harding, A. Langaney, and J. B. Clegg
 - 1995 High Diversity of Alpha-globin Haplotypes in a Senegalese Population, Including Many Previously Unreported Variants. *American Journal of Human Genetics*57(5):1186–1198.
- Massler, M., I. Schour, and H. Poncher
 - 1941 Developmental Pattern of the Child as Reflected in the Calcification Pattern of the Teeth. *American Journal of Diseases of Children* 62:33–67.
- Mateu, E., D. Comas, F. Calafell, A. Perez-Lezaun, A. Abade, and J. Bertranpetit
 - 1997 Tale of Two Islands: Population History and Mitochondrial DNA Sequence Variation of Bioko and São Tomé, Gulf of Guinea. *Annals of Human Genetics* 61(6):507–518.
- May J., D. Comas, F. Calafell, A. Perez-Lezaun, A. Abade, and J. Bertranpetit
 - 1998 HLA DPA1/DPB1 Genotype and Haplotype Frequencies, and Linkage Disequilibria in Nigeria, Liberia, and Gabon. *Tissue Antigens* 52(3):199–207.
- McCaa, R.
 - 2002 Paleodemography of the Americas: From Ancient Times to Colonialism and Beyond. In *Backbone of History: Health and Nutrition in the Western Hemisphere*, edited by R. H. Steckel and J. C. Rose, pp. 94–124.

Cambridge University Press, Cambridge, Great Britain.

McCammon, R. W.

1970 *Human Growth and Development*. Charles C Thomas, Springfield, Illinois.

McCord, C. P.

1953 Lead and Lead Poisoning in Early America: Lead Mines and Lead Poisoning.
Industrial Medicine and Surgery 22:534–539.

McKee, S.

1935 *Labor in Colonial New York*. Columbia University Press, New York.

McManus, E. J.

1966 A History of Negro Slavery in New York. Syracuse University Press, Syracuse, New York.

2001 Black Bondage in the North. 1st pbk. ed. Syracuse University Press, Syracuse, New York.

Meckel, R.

1997 Racialism and Infant Death: Late Nineteenth- and Early Twentieth-century Sociomedical Discourse on African American Infant Mortality. In *Migrants, Minorities* and *Health*, edited by L. Marks and M. Worbeys, pp. 70–92. Routledge, London, Great Britain.

Medford, E. G.

1996 *The African Burial Ground in Historical Perspective*. Research File: OPEI. Howard University, Washington, D.C.

Medford, E. G. (editor)

2009 Historical Perspectives of the African
Burial Ground: New York Blacks and the
Diaspora. The New York African Burial
Ground: Unearthing the African Presence
in Colonial New York, vol. 3. Howard
University, Washington, D. C.

Medford, E. G., and E. Brown

2000 A Constant Source of Irritation: Enslaved Women's Resistance in the City of New York. *HUArchivesNet* 5. Electronic document, http://www.huarchivesnet.howard.edu/0008huarnet/medford1.htm.

Medford, E. G., E. L. Brown, S. H. H. Carrington, L. Heywood, and J. Thornton

2009a "By the Visitations of God": Death,
Burial, and the Affirmation of Humanity.
In Historical Perspectives of the African
Burial Ground: New York Blacks and
the Diaspora, edited by E. G. Medford,
pp. 85–90. The New York African Burial
Ground: Unearthing the African Presence
in Colonial New York, vol. 3. Howard
University, Washington, D.C.

2009b Disease and Health. In *Historical Perspectives of the African Burial Ground: New York Blacks and the Diaspora*, edited by E. G. Medford, pp. 78–84. The New York African Burial Ground: Unearthing the African Presence in Colonial New York, vol. 3. Howard University, Washington, D.C.

2009c The Ubiquity of Work. In *Historical Perspectives of the African Burial Ground:*New York Blacks and the Diaspora, edited by E. G. Medford, pp. 51–64. The New York African Burial Ground: Unearthing the African Presence in Colonial New York, vol. 3. Howard University, Washington, D.C.

Medford, E. G., E. Brown, L. Heywood, and J. Thornton

2009 Slavery and Freedom in New Amsterdam. In *Historical Perspectives of the African Burial Ground: New York Blacks and the Diaspora*, edited by E. G. Medford, pp. 13–23. The New York African Burial Ground: Unearthing the African Presence in Colonial New York, vol. 3. Howard University, Washington, D.C.

Meindl, R. S., and C. O. Lovejoy

1985 Ectocranial Suture Closure: A Revised Method for the Determination of Skeletal Age at Death based on the Lateral-Anterior Sutures. *American Journal of Physical Anthropology* 68:57–66.

Meindl, R. S., C. O. Lovejoy, R. P. Mensforth, and R. A. Walker

1985 A Revised Method of Age Determination using the Os Pubis, with a Review and Tests of Accuracy of other Current Methods of Pubic Symphyseal Aging. *Ameri*-

can Journal of Physical Anthropology 68:29–45.

Menard, R.

1975 The Maryland Slave Population, 1658–1730: A Demographic Profile of Blacks in Four Counties. *William and Mary Quarterly*, 3rd ser. 32:29–54.

Mendez, H.

1985 Introduction to the Study of Pre- and Postnatal Growth in Humans: A Review. *American Journal of Medical Genetics* 20:63–85.

Merbs, C. F.

- 1983 Patterns of Activity-Induced Pathology in a Canadian Inuit Population. Paper No. 119.
 National Museum of Man Mercury Series.
 National Museums of Canada, Ottowa,
 Ontario.
- 1989a Spondylolysis: Its Nature and Anthropological Significance. *International Journal of Anthropology* 4(3):163–169.
- 1989b Trauma. In *Reconstruction of Life from the Skeleton*, edited by M. Y. İşcan and K. A. R. Kennedy, pp. 161–189. Alan R. Liss, New York.
- 1996 Spondylolysis and Spondylolisthesis: A Cost of Being an Erect Biped or a Clever Adaptation. *Yearbook of Physical Anthropology* 39:201–228.
- Meyer, C. G., and L. Schnittger
 - 1993 A Silent Mutation in HLA-DPBI*0101 and its Evolutionary Implications. *Human Immunology* 38(2):123–126.
- Migot-Nabias, F., I. Fajardy, P. M. Danze, S. Everaere, J. Mayombo, T. N. Minh, A. Renaut, and A. J. Georges
 - 1999 HLA Class II Polymorphism in a Gabonese Banzabi Population. *Tissue Antigens* 53(6):580–585.

Mikell, G.

1999 Feminism and Black Culture in the Ethnography of Zora Neale Hurston. In *African American Pioneers of Anthropology*, edited by I. E. Harrison and F. V. Harrison, pp. 51–69. University of Illinois Press, Urbana.

Miles, A. W.

1994 Non-union of the Epiphysis of the Acromion in the Skeletal Remains of a Scottish

Population ca. 1700. *International Journal of Osteoarchaeology* 4(2):149–164.

Miles, A. W., and J. S. Bulman

1994 Growth Curves of Immature Bones from a Scottish Island Population of Sixteenth to Mid-Nineteenth Century: Limb-Bone Diaphyses and Some Bones of the Hand and Foot. *International Journal of Osteo-archaeology* 4:121–136.

Milner, G. R., and C. S. Larsen

1991 Teeth as Artifacts of Human Behavior: Intentional Mutilation and Accidental Modification. In *Advances in Dental Anthropology*, edited by M. A. Kelley and C. S. Larsen, pp. 357–378. Wiley-Liss, New York.

Milner, G. R., J. W. Wood, and J. L. K. Boldsen 2000 Paleodemography. In *Biological Anthro*pology of the Human Skeleton, edited by M. A. Katzenberg and S. R. Saunders, pp. 467–497. Wiley, New York.

Mintz, S. W.

- 1951 Canamelar: The Contemporary Culture of a Puerto Rican Proletariat. Unpublished Ph.D. dissertation, Department of Sociology, Columbia University, New York.
- 1974 *Caribbean Transformations*. Aldine, Chicago.

Mintz, S. W., and R. Price

1992 The Birth of African-American Culture: An Anthropological Perspective. Beacon Press, Boston, Massachusetts.

Minutes of the Court of General Sessions

n.d. Municipal Archives, City and County of New York. Microfilm. New York.

Modiano, D., G. Luoni, V. Petrarca, B. Sodiomon Sirima, M. De Luca, J. Simpore, M. Coluzzi, J. G. Bodmer, and G. Modiano

2001 HLA Class I in Three West African Ethnic Groups: Genetic Distances from Sub-Saharan and Caucasoid Populations. *Tissue Antigens* 57(2):128–137.

Monsalve, M. V., and E. Hagelberg

1997 Mitochondrial DNA Polymorphisms in Caribbean People of Belize. *Proceedings* of the Royal Society of London, Biological Sciences 264(1385):1217–1224.

- Monteiro, C. A., and A. M. Torres
 - 1992 Can Secular Trends in Child Growth Be Estimated from a Single Cross Sectional Survey? *British Medical Journal* 305(6857):797–799.
- Monyeki, K. D., N. Cameron, and B. Getz 2000 Growth and Nutritional Status of Rural South African Children 3–10 Years Old: The Ellisras Growth Study. *American Journal of Human Biology* 12:42–49.
- Moore, J. A., A. C. Swedlund, and G. J. Armelagos 1975 The Use of Life Tables in Paleodemography. *American Antiquity* 40:57–70.
- Moorrees, C. F. A., E. A. Fanning, and E. E. Hunt, Ir
 - 1963a Formation and Resorption of Three Deciduous Teeth in Children. *American Journal of Physical Anthropology* 21:205–213.
 - 1963b Age Variation of Formation Stages for Ten Permanent Teeth. *Journal of Dental Research* 42(6):1490–1492.
- Moreau, J. L., P. Rouas, and A. Rouas 2002 Carabelli's Tubercule in the Wolof Ethnic Group. *Senegal Morphologie* 86(273):236.
- Morgan, Philip
 - 1984 Black Life in Eighteenth-Century Charleston. *Perspectives in American History*, n.s. 1:305–335.
- Morilla, J. M., J. M. Afonso, M. Hernández, J. J. Pestano, and J. M. Larruga
 - 1988 Human Enzyme Polymorphism in the Canary Islands. II. African Influence. *Human Heredity* 38(2):101–105.
- Morris, A. G.
 - 1998 Dental Mutilation in Southern African History and Prehistory with Special Reference to the Cape Flats Smile. *Journal of the South African Dental Association* 53:179–183.
- Mouele, R., J. M. Bodo, D. M. Mpele, J. Feingold, and F. Galacteros
 - 2000 Beta-globin Gene Haplotypes and Alphathalassemia Analysis in Babinga Pygmies from Congo-Brazzaville. *Human Biology* 72(2):379–383.
- Moynihan, D. P.
 - 1965 The Negro Family in America: The Case for National Action. Office of Planning

- and Research, U.S. Department of Labor, Washington, D.C.
- Mullin, M.
 - 1995 *African in America*. University of Illinois Press, Chicago.
- Muniz, A., L. Corral, C. Alaez, E. Svarch, E. Espinosa, N. Carbonell, R. di Leo, L. Felicetti, R. L. Nagel, and G. Martinez
 - 1995 Sickle Cell Anemia and Beta-gene Cluster Haplotypes in Cuba. *American Journal of Hematology* 49(2):163–164.
- Mwaria, C.
 - 1999 The Continuing Dialogue: The Life and Work of Elliot Skinner as Exemplar of the African-American/African Dialectic. In *African American Pioneers of Anthropology*, edited by I. E. Harrison and F. V. Harrison, pp. 274–292. University of Illinois Press, Urbana.
- Nagy, B. L., and D. E. Hawkey
 - 1993 Correspondence of Osteoarthritis and Muscle Use in Reconstructing Prehistoric Activity Pattern. Paper presented at the 20th Annual Meeting of the Paleopathology Association, Toronto, Ontario, Canada.
- Nash, G. B.
 - 1988 Forging Freedom: The Formation of Philadelphia's Black Community, 1720–1840. Harvard University Press, Cambridge, Massachusetts.
- National Historic Preservation Act 1996 Public Law 89-665 § 16 U.S.C. 470.
- National Institute of Standards and Technology (NIST)
 - 1992 Standard Reference Materials 612, Trace Elements in a Glass Matrix. Gaithersburg, Maryland.
- Native American Graves Protection and Repatriation Act
- 1990 Public Law 101-601\s 25 U.S.C. 3001 et seq. Needleman, H. L.
 - 1998 Childhood Lead Poisoning: The Promise and Abandonment of Primary Prevention. *American Journal of Public Health* 88(12):1871–1877.
- Needleman, H. L., and D. Bellinger
 - 1991 The Health Effects of Low Level Exposure to Lead. *Annual Review of Public Health* 12:111–140.

New York City Common Council

1905 Minutes of the Common Council of the City of New York, 1675–1776, edited by H.
L. Osgood, A. B. Keep, C. A. Nelson, and the New-York Historical Society. 8 vols.
Dodd, Mead, New York.

New York State

1894 Colonial Laws of New York from 1664 to the Revolution, edited by C. Z. Lincoln, W. H. Johnson, and A. J. Northrup. 5 vols. J. B. Lyons, Albany, New York.

Nichol, C. R.

1989 Complex Segregation Analysis of Dental Morphological Variants. *American Journal* of Physical Anthropology 78:37–59.

Nicolls, C.

1756–1765 C. Nicolls Ledger Books. Archived material, New-York Historical Society, New York.

Nott, J. C., and G. R. Gliddon

1854 Types of Mankind; Or, Ethnological Researches, based upon the Ancient Monuments, Paintings, Sculptures, and Crania of Races, and upon their Natural, Geographical, Philological, and Biblical History. Lippincott, Grambo, Philadelphia, Pennsylvania.

Nurse, G. T., M. C. Botha, and T. Jenkins 1977 Sero-genetic Studies on the San of South West Africa. *Human Heredity* 27(2):81–98.

Nurse, G. T., and T. Jenkins

1977 Serogenetic Studies on the Kavango Peoples of South West Africa. *Annals of Human Biology* 4(5):465–478.

Nurse, G. T., T. Jenkins, J. H. David, and A. G. Steinberg

1979 The Njinga of Angola: A Serogenetic Study. *Annals of Human Biology* 6(4):337–348.

Oberfield, S. E., D. L. Wethers, J. L. Kirkland, and L. S. Levine

1987 Growth Hormone Response to Growth Hormone Releasing Factor in Sickle Cell Disease. *American Journal of Pediatrics and Hermetic Oncology* 9(4):331–334.

Ofodile, F. A.

1994 Nasal Bones and Pyriform Apertures in Blacks. *Annals of Plastic Surgery* 32(1):21–26.

Ogden, J. A.

1984a Radiology of Postnatal Skeletal Development XI: The First Cervical Vertebra. *Skeletal Radiology* 12:12–20.

1984b Radiology of Postnatal Skeletal Development XII: The Second Cervical Vertebra. *Skeletal Radiology* 12:169–177.

Ogden, J. A., R. F. Hempton, and W. O. Southwick 1975 Development of the Tibial Tuberosity. *Anatomical Record* 182:431–446.

Ogden, J. A., and S. M. McCarthy

1983 Radiology of Postnatal Skeletal Development VIII: Distal Tibia and Fibula. *Skeletal Radiology* 10:209–220.

Ogden, J. A., and S. B. Phillips

1983 Radiology of Postnatal Skeletal Development VII: The Scapula. *Skeletal Radiology* 9:157–169.

Olin, M. S., H. A. Young, D. Seligson, and H. H. Schmidek

1982 An Unusual Cervical Injury occurring during Cow Milking. *Spine* 7:514–515.

Onat, T.

1997 Growth of Metacarpal II during Adolescence: Relationships to Stature, Weight, and Skeletal and Sexual Maturity. *American Journal of Human Biology* 9:425–438.

Orser, C. E., Jr.

1998 The Archaeology of the African Diaspora. *Annual Review of Anthropology* 27:63–82.

Ortiz, F.

1927 Los Negros Curros. *Glosario de Afrone-grismos*. Archivos del Folklore Cubano 2(4):285–307.

1929 Los Afrocubanos Dientimellados. *Archivos del Folkore Cubano* 4:5–24.

1947 *Cuban Counterpoint: Tobacco and Sugar.* Alfred A. Knopf, New York.

Ortner, D. J.

1966 A Recent Occurrence of an African Type Tooth Mutilation in Florida. *American* Journal of Physical Anthropology 25:177–

2003 Identification of Pathological Conditions in Human Remains. 2nd. ed. Academic Press, San Diego, California.

- Ortner, D. J., and A. C. Aufderheide (editors)
 - 1991 Human Paleopathology: Current Syntheses and Future Options. Smithsonian Institution Press, Washington, D.C.
- Ortner, D. J., E. H. Kimmerle, and M. Diez 1999 Probable Evidence of Scurvy in Subadults from Archaeological Sites in Peru. *American Journal of Physical Anthropology* 108:321–332.
- Ortner, D. J., and W. G. Putschar
 - 1981 *Identification of Pathological Conditions in Human Skeletal Remains*. Smithsonian
 Contributions to Anthropology No. 28.
 Smithsonian Institution Press, Washington,
 D.C.
- Oschinsky, L.
 - 1954 The Racial Affinities of the Baganda and other Bantu Tribes of British East Africa.W. Heffer and Sons, Cambridge, Great Britain.
- Outridge, P.
 - 1996 Potential Applications of Laser Ablation ICP-MS in Forensic Biology and Exploration Geochemistry. *Spectroscopy* 11(4):21–26.
- Outridge, P. M., R. J. Hughes, and R. D. Evans 1996 Determination of Trace Metals in Teeth and Bones by Solution Nebulization ICP-MS. *Atomic Spectroscopy* 17(1):1–8.
- Outridge, P. M., G. Veinott, and R. D. Evans 1995 Laser Ablation ICP-MS Analysis of Incremental Biological Structures: Archives of Trace Element Accumulation. *Environmental Review* 3:160–170.
- Owsley, D. W., R. W. Mann, and K. M. Lanphear
 1990 Osteological Examination of Human
 Remains from the Charity Hospital/
 Cypress Grove II Cemetery, New Orleans,
 Louisiana: Final Report of Investigations,
 vol. 2. Smithsonian Institution, Department
 of Anthropology, Washington, D.C.
- Owsley, D. W., C. E. Orser, Jr., R. W. Mann, P. H. Moore-Jansen, and R. L. Montgomery
 - 1987 Demography and Pathology of an Urban Slave Population from New Orleans.

 **American Journal of Physical Anthropology 74:185–197.

- Pagnier, J.
 - 1984 Evidence for the Multicentric Origin of the Sickle Cell Hemoglobin Gene in Africa. *Proceedings of the National Academy of Sciences of the United States of America* 81(6):1771–1773.
- Palmer, M. R., and J. M. Edmond
 - 1992 Controls over the Strontium Isotope Composition of River Water. *Geochimica et Cosmochimica Acta* 56:2099–2111.
- Pante-De-Sousa, G., R. C. Mousinho-Ribeiro, E. J. Dos Santos, and J. F. Guerreiro
 - 1999 Beta-globin Haplotypes Analysis in Afro-Brazilians from the Amazon Region: Evidence for a Significant Gene Flow from Atlantic West Africa. *Annals of Human Genetics* 26(4):365–373.
- Parra, E. J., A. Marcini, J. Akey, J. Martinson, M. A. Batzer, R. Cooper, T. Forrester, D. B. Allison, R. Deka, R. E. Ferrell, and M. D. Shriver
- 1998 Estimating African American Admixture Proportions by Use of Population-Specific Alleles. *American Journal of Human Genetics* 63(6):1839–1851.
- Parrington, M., and D. G. Roberts
 - 1984 The First African Baptist Church Cemetery: An Archaeological Glimpse of Philadelphia's Early Nineteenth Century Free Black Community. *Archaeology* 37:26–32.
 - 1990 Demographic, Cultural, and Bioanthropological Aspects of a Nineteenth Century Free Black Population in Philadelphia, Pennsylvania. In *A Life in Science: Papers in Honor of J. Lawrence Angel*, edited by J. E. Buikstra, pp. 138–170. Scientific Papers No. 6. Center for American Archaeology, Kampsville, Illinois.
- Paynter, R.
 - 1992 W. E. B. Du Bois and the Material World of African-Americans in Great Barrington, Massachusetts. *Critique of Anthropology* 12:277–291.
- Pearson, M. P.
 - 1999 *The Archaeology of Death and Burial*. Sutton, Phoenix Mill, Great Britain.
- Pereira, L., L. Gusmao, M. J. Prata, P. Mota, M. J. Trovoada, and A. Amorim
 - 2000 Variation in STR Loci of the Human Myelin Basic Protein Gene: North Portugal

- and São Tomé e Principe. *Human Biology* 72(3):481–487.
- Pereira, L., V. Macaulay, A. Torroni, R. Scozzari, M. J. Prata, and A. Amorim
 - Prehistoric and Historic Traces in the mtDNA of Mozambique: Insights into the Bantu Expansions and the Slave Trade.
 Annals of Human Genetics 65(5):439–458.

Perrson, M.

1995 The Role of Sutures in Normal and Abnormal Craniofacial Growth. *Acta Odontologica Scandinavica* 53:152–161.

Perry, W. R.

1997 Analysis of the African Burial Ground Archaeological Materials. *Newsletter of* the African Burial Ground and Five Points Archaeological Projects 2:1, 3–4, 14.

Perry, W., and M. L. Blakey

- 1997 Archaeology as Community Service: The African Burial Ground Project in New York City. North American Dialogue 2(1). Reprinted in Lessons from the Past: An Introductory Reader in Archaeology by K. L. Feder, pp. 45–51.
- Perry, W. R., J. Howson, and B. A. Bianco (editors) 2009a *The Archaeology of the New York African Burial Ground*. The New York African Burial Ground: Unearthing the African Presence in Colonial New York, vol. 2, pt. 1. Howard University, Washington, D.C.
 - 2009b The Archaeology of the New York African Burial Ground: Descriptions of Burials. The New York African Burial Ground: Unearthing the African Presence in Colonial New York, vol. 2, pt. 2. Howard University, Washington, D.C.

Perry, W. R., and R. Paynter

1999 Artifacts, Ethnicity, and the Archaeology of African Americans. In *I, Too, Am America: Archaeological Studies of African-American Life*, edited by T. Singleton, pp. 299–310. University Press of Virginia, Charlottesville.

Phenice, T. W.

1969a A Newly Developed Visual Method of Sexing the Os Pubis. *American Journal of Physical Anthropology* 30:297–302.

- 1969b An Analysis of the Human Skeletal Material from Burial Mounds in North Central Kansas. Publications in Anthropology No. 1. University of Kansas, Lawrence.
- Physician/Pharmacist Day Book

1743–1744 Archived Material, New-York Historical Society.

Piersen, W. D.

1993 Black Legacy: America's Hidden Heritage. University of Massachusetts Press, Amherst.

Pittard, E.

1911 La taille, la grandeur du buste et des jambs, l'indice céphalique et l'indice nasal de 253 Tatars a la péninsule des Balkans. *Bulletins de Mémoires de la Société d'Anthropologie de Paris* 2(2):432–441.

Pollitzer, W. S.

1958 The Negroes of Charleston (S.C.): A Study of Hemoglobin Types, Serology, and Morphology. *American Journal of Physical Anthropology* 16:241–263.

Powell, J. S.

1995 Dental Variation and Biological Affinity among Middle Holocene Human Populations in North America. Ph.D. dissertation, Texas A&M University. University Microfilms, Ann Arbor, Michigan.

Price, R., and S. Price

- 1972 Afro-American Arts of the Suriname Rain Forest. University of California Press, Berkeley and Los Angeles.
- Price, T. D., G. Grupe, and P. Schroter
- 1994 Reconstruction of Migration Patterns in the Bell Beaker Period by Stable Strontium Isotope Analysis. *Applied Geochemistry* 9:413–417.
- Price, T. D., C. M. Johnson, J. A. Ezzo, J. Ericson, and J. H. Burton
 - 1994 Residential Mobility in the Prehistoric Southwest United States: A Preliminary Study using Strontium Isotope Analysis. *Journal of Archaeological Science* 21:315–330.
- Price, T. D., M. J. Schoeninger, and G. J. Armelagos
 - 1985 Bone Chemistry and Past Behavior: An Overview. *Journal of Human Evolution* 14:419–447.

- Probst, C. M., E. P. Bompeixe, N. F. Pereira, M. M. de O. Dalalio, J. E. Visentainer, L. T. Tsuneto, and M. L. Petzl-Erler
 - 2000 HLA Polymorphism and Evaluation of European, African, and Amerindian Contribution to the White and Mulatto Populations from Paraná, Brazil. *Human Biology* 72(4):597–617.
- Pryor, J. W.
 - 1923 Differences in the Time of Development of Centers of Ossification in the Male and Female Skeleton. *Anatomical Record* 25:257–274.
- Purchase, N. G., and J. E. Fergusson
 1986 Lead in Teeth: The Influence of the Tooth
 Type and the Sample within a Tooth on

Lead Levels. *Science of the Total Environ*ment 52:239–250.

Pyle, S. I., and N. L. Hoerr

- 1955 Radiographic Atlas of Skeletal Development of the Knee. Charles C Thomas, Springfield, Illinois.
- Rando, J. C., V. M. Cabrera, J. M. Larruga, M. Hernández, A. M. González, F. Pinto, and H. J. Bandelt
 - 1999 Phylogeographic Patterns of mtDNA reflecting the Colonization of the Canary Islands. *Annals of Human Genetics* 63(5):413–428.
- Rando, J. C., F. Pinto, A. M. González, M. Hernández, J. M. Larruga, V. M. Cabrera, and H. J. Bandelt 1998 Mitochondrial DNA Analysis of Northwest African Populations Reveals Genetic

Exchanges with European, Near-Eastern, and Sub-Saharan Populations. *Annals of Human Genetics* 62(6):531–550.

Rankin-Hill, L. M.

- 1994 Uncovering African Americans' Buried Past. In *Science Year: World Book Annual Scientific Supplement*, pp. 118–133. World Book, Chicago.
- 1997 A Biohistory of 19th-Century Afro-Americans: The Burial Remains of a Philadelphia Cemetery. Bergin and Garvey, Westport, Connecticut.
- Rankin-Hill, L. M., and M. L. Blakey 1994 W. Montague Cobb (1904–1990): Physical

Anthropologist, Anatomist, and Activist. *American Anthropologist* 96:74–96.

- Rathbun, T. A.
 - 1987 Health and Disease at a South Carolina Plantation: 1840–1870. *American Journal of Physical Anthropology* 74:239–253.
- Rathbun, T. A., and J. D. Scurry
- 1991 Status and Health in Colonial South Carolina: Belleview Plantation, 1738–1756. In What Mean These Bones: Studies in Southeastern Bioarchaeology, edited by M. L. Powell, P. S. Bridges, and A. M. W. Mires, pp. 148–164. University of Alabama Press, Tuscaloosa.
- Rathbun, T. A., and R. H. Steckel 2002 The Health of Slaves and Free Blacks

in the East. In *The Backbone of History:*Health and Nutrition in the Western Hemisphere, edited by R. H. Steckel and J. C.

Rose. Cambridge University Press, Cambridge, Great Britain.

Reed, W. L.

- 1992 Lead Poisoning: A Modern Plague among African American Children. In *Health Issues in the Black Community*, edited by R. L. Brathwaite and S. E. Taylor, pp. 178–191. Jossey-Bass, San Francisco, California.
- Reich, D. E., S. B. Gabriel, and D. Altshuler 2003 Quality and Completeness of SNP Databases. *Nature Genetics* 33(4):457–458.
- Relethford, J. H.
 - 2001 Global Analysis of Regional Differences in Craniometric Diversity and Population Substructure. *Human Biology* 73(5):629–636.
- Relethford, J. H., and H. C. Harpending 1994 Craniometric Variation, Genetic Theory, and Modern Human Origins. *American Journal of Physical Anthropology* 95:249– 270.
- Relethford, J. H., and L. B. Jorde
 1999 Genetic Evidence for Larger African
 Population Size during Recent Human
 Evolution. *American Journal of Physical*Anthropology 108:251–260.
- Ribot, I., and C. Roberts
 - 1996 A Study of Non-Specific Stress Indicators and Skeletal Growth in Two Medieval Subadult Populations. *Journal of Archaeological Science* 23:67–79.

Ricklan, D. E., and P. V. Tobias

1986 Unusually Low Sexual Dimorphism of Endocranial Capacity in a Zulu Cranial Series. *American Journal of Physical Anthropology* 71:285–293.

Ripley, W. Z.

1899 *The Races of Europe: A Sociological Study*. D. Appleton, New York.

Rivero de la Calle, M.

1973 La Mutilación Dentaria en la Población Negroide de Cuba. *Ciencias* 4:3–21.

Rodahl, K.

1966 Bone Development. In *Human Development*, edited by F. Falkner, pp. 503–509.W. B. Saunders, Philadelphia, Pennsylvania.

Rodríguez Romero, W. E., G. F. Sáenz Renauld, and M. A. Chaves Villalobos

1998 Hemoglobin S Haplotypes: Their Epidemiologic, Anthropologic and Clinical Importance. *Revista Panamericana de Salud Pública* 3(1):1–8.

Rogers, J.

2000 The Palaeopathology of Joint Disease. In *Human Osteology in Archaeology and Forensic Science*, edited by M. Cox and S. Mays, pp. 163–182. Greenwich Medical Media, London, Great Britain.

Rose, J. C. (editor)

1985 Gone to a Better Land: A Biohistory of a Rural Black Cemetery in the Post-Reconstruction South. Research Series No. 25. Arkansas Archaeological Survey, Fayetteville.

Rose, J. C., K. W. Condon, and A. H. Goodman 1985 Diet and Dentition: Development Disturbances. In *The Analysis of Prehistoric Diets*, edited by R. I. Gilbert and J. H. Mielken, pp. 281–305. Academic Press, Orlando, Florida.

Rose, J. C., and L. G. Santeford

1985 Cedar Grove Burial Interpretation. In *Gone*to a Better Land: A Biohistory of a Rural
Black Cemetery in the Post-Reconstruction
South, edited by J. C. Rose, pp. 130–145.
Research Series No. 25. Arkansas Archaeological Survey, Fayetteville.

Rosen, J. F., and J. G. Pounds

1998 Severe Chronic Lead Insult that Maintains Body Burdens of Lead Related to Those in the Skeleton: Observations by Dr. Clair Patterson Conclusively Demonstrated. Environmental Research 78:140–151.

Ross, H. B., A. M. Adams, and L. M. Williams 1999 Caroline Bond Day: Pioneer Black Physical Anthropologist. In *African American Pioneers in Anthropology*, edited by I. E. Harrison and F. V. Harrison. pp. 37–50. University of Illinois, Urbana.

Rosser, Z. H.

2000 Y-Chromosomal Diversity in Europe Is Clinal and Influenced Primarily by Geography, rather than by Language. *American Journal of Human Genetics* 67(6):1526–1543.

Rothschild, N. A.

1990 New York City Neighborhoods: The 18th Century. Academic Press, San Diego, California.

Rovillé-Sausse, F.

1998 Growth Rates of Children of Subsaharan African Ancestry Born to Immigrant Parents and French Children in Paris.

American Journal of Human Biology
10:757–764.

Rudney, J. D., R. V. Katz, and J. W. Brand 1983 Interobserver Reliability of Methods for Paleopathological Diagnosis of Dental Caries. *American Journal of Physical Anthropology* 62:243–248.

Ruff, C. B.

2000 Body Size, Body Shape, and Long Bone Strength in Modern Humans. *Journal of Human Evolution* 38:269–290.

Runia, L. T.

1987 Strontium and Calcium Distribution in Plants: Effect on Paleodietary Studies. *Journal of Archaeological Science* 14:599–608.

Ryan, A. S.

1997 Iron-Deficiency Anemia in Infant Development: Implications for Growth, Cognitive Development, Resistance to Infection, and Iron Supplementation. *Yearbook of Physical Anthropology* 40:25–62.

- Salas, A., M. Richards, T. De la Fe, M. V. Lareu, B. Sobrino, P. Sánchez-Diz, V. Macaulay, and A. Carracedo
 - 2002 The Making of the African mtDNA Landscape. *American Journal of Human Genetics* 71(5):1082–1111.

Samford, P.

1994 Searching for West African Cultural Meanings in the Archaeological Record. *African American Archaeology* 12:Winter.

Sanday, P. R.

1999 Skeletons in the Anthropological Closet:
The Life and Work of William S. Willis, Jr. In *African American Pioneers of Anthropology*, edited by I. E. Harrison and F. V. Harrison, pp. 243–264. University of Illinois, Urbana.

Sarnat, B. G., and I. Schour

- 1941 Enamel Hypoplasias (Chronic Enamel Aplasia) in Relationship to Systemic Diseases: A Chronological, Morphological and Etiological Classification. *Journal of the American Dental Association* 28:1989–2000.
- Sarr, M., B. Toure, A. W. Kane, F. Fall, and M. M. Wone
 - 2000 Taurodontism and the Pyramidal Tooth at the Level of the Molar Prevalence in the Senegalese Population 15 to 19 Years of Age. *Odonto-stomatologie Tropicale* 23(89):31–34.

Satake, T.

- 1999 Sexual Dimorphism in the Relationship between Number of Emerged Permanent Teeth and Percentage of Adult Stature. *American Journal of Human Biology* 11:619–626.
- Sattenspiel, L., and H. Harpending 1983 Stable Populations and Skeletal Age. *American Antiquity* 48:489–498.

Saunders, S. R.

- 1992 Subadult Skeletons and Growth Related Studies. In *Skeletal Biology of Past Peoples: Research Methods*, edited by M. A. Katzenberg and S. R. Saunders, pp. 1–20. Wiley-Liss, New York.
- 2000 Subadult Skeletons and Growth-Related Studies. In *Biological Anthropology of the Human Skeleton*, edited by M. A. Katzen-

- berg and S. R. Saunders, pp. 135–161. Wiley-Liss, New York.
- Saunders, S. R., and L. Barrans
 - 1999 What Can Be Done about the Infant
 Category in Skeletal Samples? In *Human Growth in the Past: Studies from Bones and Teeth*, edited by R. D. Hoppa and C.
 M. FitzGerald, pp. 153–209. Cambridge
 Studies in Biological and Evolutionary
 Anthropology 25. Cambridge University
 Press, Cambridge, Great Britain.
- Saunders, S. R., C. DeVito, A. Herring, R. Southern, and R. Hoppa
 - 1993 Accuracy Tests of Tooth Formation Age Estimators for Human Skeletal Remains. *American Journal of Physical Anthropology* 97:173–188.

Saunders, S. R., and R. D. Hoppa

- 1993a Growth Deficit in Survivors and Non-Survivors: Biological Mortality Bias in Subadult Skeletal Samples. *Yearbook of Physical Anthropology* 36:127–151.
- 1993b Diaphyseal Growth in a Nineteenth Century Skeletal Sample of Subadults from St. Thomas Church, Belleville, Ontario. *International Journal of Osteoarchaeology* 3:265–281.

Savitt, T. L.

1978 Medicine and Slavery: The Diseases and Health Care of Blacks in Antebellum Virginia. University of Illinois Press, Urbana.

Schell, L. M.

- 1991 Effects of Pollutants on Human Prenatal and Postnatal Growth: Noise, Lead, Polychlorobiphenyl Compounds, and Toxic Wastes. *Yearbook of Physical Anthropology* 34: 157–188.
- 1997 Culture as a Stressor: A Revised Model of Biocultural Interaction. *American Journal of Physical Anthropology* 102:67–77.

Scher, A. T.

1978 Injuries to the Cervical Spine Sustained while Carrying Loads on the Head. *Paraplegia* 16:94–101.

Scheuer, L., and S. Black

2000 *Developmental Juvenile Osteology*. Academic Press, San Diego, California.

- Schmerer, W. M., S. Hummel, and B. Herrmann 1997 Reproducibility of a DNA Typing. *Anthropologischer Anzeiger* 55(2):199–206.
- Schmidt, P. R., and T. C. Patterson (editors)
 1995 Making Alternative Histories: The Practice
 of Archaeology and History in Non-Western Settings. School of American Research
 Press, Santa Fe, New Mexico.
- Schour, I., and M. Massler
 1941 The Development of the Human Dentition.

Journal of the American Dental Association 28:1153–1160.

- Schultes, T., S. Hummel, and B. Herrmann 1997 Classification of Isolated Skeletal Elements using aDNA Typing. *Anthropologischer Anzeiger* 55(2):207–216.
- Schultz, M.
- 2003 Light Microscopic Analysis in Skeletal Paleopathology. In *Identification of Pathological Conditions in Human Skeletal Remains*, edited by D. J. Ortner, pp. 73–107. 2nd ed. Academic Press, New York.
- Schurr, M. R.
 - 1997 Stable Nitrogen Isotopes as Evidence for the Age of Weaning at the Angel Site: A Comparison of Isotopic and Demographic Measures of Weaning Age. *Journal of Archaeological Science* 24:919–927.
- Schwarcz, H. P., L. Gibbs, and M. Knyf
 1991 Oxygen Isotope Analysis as an Indicator
 of Place of Origin. In *An Investigation of a Military Cemetery from the War of 1812*,
 edited by S. Pfeiffer and R. F. Williamson,
 pp. 263–268. Dundurn Press, Toronto,
 Ontario, Canada.
- Schwarcz, H. P., and M. J. Schoeninger 1991 Stable Isotope Analysis in Human Nutritional Ecology. *Yearbook of Physical Anthropology* 34:283–321.
- Sciulli, P. W.
 - 1979 Size and Morphology of the Permanent Dentition in Prehistoric Ohio Valley Amerindians. *American Journal of Physical Anthropology* 50:615–628.
 - 1994 Standardization of Long Bone Growth in Children. *International Journal of Osteo-archaeology* 4:257–325.

- Scott, E. C.
 - 1979 Dental Wear Scoring Technique. *American Journal of Physical Anthropology* 51:213–218.
- Scott, G. R.
 - 1991 Dental Anthropology. In *Encyclopedia of Human Biology*, vol. 2, edited by R. Dulbecco, pp.789–804. Academic Press, San Diego, California.
 - 1994 Teeth and Prehistory on Kodiak Island. In Reckoning with the Dead: The Larsen Bay Repatriation and the Smithsonian Institution, edited by T. L. Bray and T. W. Killion, pp. 67–74. Smithsonian Institution Press, Washington, D. C.
- Scott, G. R., H. Rosario, Y. Potter, J. F. Noss, A. A. Dahlberg, and T. Dahlberg
 - 1983 The Dental Morphology of the Pima Indians. *American Journal of Physical Anthropology* 61:13–31.
- Scott, G. R., and C. G. Turner II
 - 1997 The Anthropology of Modern Human Teeth: Dental Morphology and its Variation in Recent Human Populations. Cambridge University Press, Cambridge, Great Britain.
- Scozzari, R., A. Torroni, O. Semino, F. Cruciani, G. Spedini, A. S. Santachiara Benerecetti
 - 1994 Genetic Studies in Cameroon: Mitochondrial DNA Polymorphisms in Bamileke. *Human Biology* 66(1):1–12.
- Scozzari, R., A. Torroni, O. Semino, G. Sirugo, A. Brega, and A. S. Santachiara-Benerecetti
 - 1988 Genetic Studies on the Senegal Population.
 I. Mitochondrial DNA Polymorphisms.

 American Journal of Human Genetics
 43(4):534–544.
- Scrimshaw, N.
 - 1991 Iron Deficiency. *Scientific American* 265(4):46–52.
- Sealy, J., R. Armstrong, and C. Schrire
 1995 Beyond Lifetime Averages: Tracing Life
 Histories through Isotopic Analysis of
 Different Calcified Tissues from Archaeological Human Skeletons. *Antiquity*
- Sealy, J. C., and A. Sillen

69:290-300.

1988 Sr and Sr/Ca in Marine and Terrestrial Foodwebs in the Southwestern Cape,

- South Africa. *Journal of Archaeological Science* 15:425–438.
- Sealy, J. C., N. J. Van der Merwe, A. Sillen, F. J. Kruger, and H. W. Krueger
 - 1991 87Sr/86Sr as a Dietary Indicator in Modern and Archaeological Bone. *Journal of Archaeological Science* 18:399–416.
- Serjeant, G. R.
 - 1981 Observations on the Epidemiology of Sickle Cell Disease. *Transactions of the Royal Society of Tropical Medicine* 75:228–233.
- Shapiro, I. M., H. L. Needleman, and O. C. Tuncay 1972 The Lead Content of Human Deciduous and Permanent Teeth. *Environmental Research* 5:467–470.
- Sharon, I. M.
 - 1988 The Significance of Teeth in Pollution Detection. *Perspectives in Biology and Medicine* 24:124–131.
- Sharpe, John
 - 1881 Proposals for Erecting a School, Library and Chapel at New York. Publication Fund Series, vol. 13, pt. 5. Collections of the New-York Historical Society. New-York Historical Society, New York.
- Shieh, A. C., and K. A. Athanasiou 2002 Biomechanics of Single Chondrocytes and Osteoarthritis. *Critical Reviews in Biomedical Engineering* 30(4–6):307–343.
- Shields, E. D.
 - 1998 The Origin of Europeans Is Not Rooted in the Middle East but in Southern East Asia. *Journal of Craniofacial Genetic Developmental Biology* 18(2):59–63.
 - 1999 A New Perspective of Human Origin and Dispersals Derived from the Microevolution of Teeth. *Journal of Craniofacial Genetics and Developmental Biology* 19(3):119–127.
- Shields, E. D., and G. Jones
 - 1996 Heterochronic Quantitative Microevolution: Dental Divergence in Aboriginal Americans. *American Journal of Physical Anthropology* 100:355–365.
- Sillen, A., and M. Kavanagh
 - 1982 Strontium and Paleodietary Research: A Review. *Yearbook of Physical Anthropology* 25:67–90.

- Sillen, A., J. C. Sealy, and N. Van der Merwe 1989 Chemistry and Paleodietary Research: No More Easy Answers. *American Antiquity* 54:504–512.
- Simpson, S. W., and C. A. Kunos
 - 1998 A Radiographic Study of the Development of the Human Mandibular Dentition. *Journal of Human Evolution* 35:479–505.
- Singleton, T. A.
 - 1995 The Archaeology of Slavery in the North. *Annual Review of Anthropology* 24:119–
 140
- Singleton, T. A., and M. D. Bograd
 - 1995 The Archaeology of the African Diaspora in the Americas. Guides to the Archaeological Literature of the Immigrant Experience in America No. 2. Society for Historical Archaeology, Glassboro, New Jersey.
- Smedley, A.
 - 1993 Race in North America: Origins and Evolution of a World View. Westview, Boulder, Colorado.
- Smith, B. H.
 - 1984 Patterns of Molar Wear in Hunter-Gatherers and Agriculturalists. *American Journal of Physical Anthropology* 63:39–56.
 - 1991 Standards of Human Tooth Formation and Dental Age Assessment. In *Advances in Dental Anthropology*, edited by M. A. Kelly and C. S. Larsen, pp. 143–168. Wiley-Liss, New York.
- Smith, D.
 - 2002 Slave Site for a Symbol of Freedom.
 Electronic document, http://www.
 nytimes.com/2002/04/20/arts/20BELL.
 html=&pagewanted=print, accessed April
 20, 2002.
- Soodyall, H., and T. Jenkins
- 1993 Mitochondrial DNA Polymorphisms in Negroid Populations from Namibia: New Light on the Origins of the Dama, Herero and Ambo. *Annals of Human Biology* 20(5):477–485.
- Sow, A., E. Peterson, O. Josifovska, M. E. Fabry, R. Krishnamoorthy, and R. L. Nagel
 - 1995 Linkage-Disequilibrium of the Senegal Haplotype with the Beta S Gene in the Republic of Guinea. *American Journal of Hematology* 50(4):301–303.

Spencer, F.

1979 Aleš Hrdlička, M.D. 1869–1943: A Chronicle of the Life and Work of an American Anthropologist. Ph.D. dissertation, Department of Anthropology, University of Michigan. University Microfilms, Ann Arbor, Michigan.

Sperber, G. H., and J. L. Moreau

1998 Study of the Number of Roots and Canals in Senegalese First Permanent Mandibular Molars. *International Endodontic Journal* 31(2):117–122.

Spinola, H., A. Brehm, E. Williams, J. Jesus, and D. Middleton

2002 Distribution of HLA Alleles in Portugal and Cabo Verde: Relationships with the Slave Trade Route. *Annals of Human Genetics* 66(4):285–296.

Stampp, K. M.

1956 The Peculiar Institution: Slavery in the Ante-Bellum South. Vintage Books, New York.

Steckel, R. H.

- 1977 The Economics of U.S. Slave and Southern White Fertility. Ph.D. dissertation, Department of Economics, University of Chicago. University Microfilms, Ann Arbor, Michigan.
- 1986 A Dreadful Childhood: The Excess Mortality of American Slaves. *Social Science History* 10:427–467.
- 1996 Women, Work, and Health under Plantation Slavery in the United States. In *More than Chattel*, edited by D. C. Gaspar and D. B. Hine, pp. 43–60. Indiana University Press, Bloomington.

Steinbock, R. T.

1976 Paleopathological Diagnosis and Interpretation, Bone Diseases in Ancient Human Populations. Charles C Thomas, Springfield, Illinois.

Steinlechner, M., K. Schmidt, H. G. Kraft, G. Utermann, and W. Parson

2002 Gabon Black Population Data on the Ten Short Tandem Repeat Loci D3S1358,
VWA, D16S539, D2S1338, D8S1179,
D21S11, D18S51, D19S433, TH01 and
FGA. International Journal of Legal Medicine 116(3):176–178.

Stevenson, J. C.

Mineral Needs of the Fetus. In *Fetal Endocrinology and Metabolism*, edited by L. D.
 Martini and V. H. T. James, pp. 178–197.
 Current Topics in Experimental Endocrinology, vol. 5. Academic Press, New York.

Stewart, C. P., and D. Guthrie (editor)

1953 *Lind's Treatise on Scurvy*. Edinburgh University Press, Edinburgh, Great Britain.

Stewart, T. D.

- 1939 Negro Skeletal Remains from Indian Sites in the West Indies. *Man* 39:49–51.
- 1953 The Age Incidence of Neural-Arch Defects in Alaskan Natives, Considered from the Standpoint of Etiology. *Journal of Bone and Joint Surgery* 25(A):937–950.
- 1958 The Rate of Development of Vertebral Osteoarthritis in American Whites and its Significance in Skeletal Age Identification. *Leech* 28(3–5):144–151.

Stewart, T. D., and J. R. Groome

1968 The African Custom of Tooth Mutilation in America. *American Journal of Physical Anthropology* 28:31–42.

Steyn, M., and M. Henneberg

1996 Skeletal Growth of Children from the Iron Age Site at K2 (South Africa). *American Journal of Physical Anthropology* 100:389–396.

Stirland, A. J.

- 1991 Diagnosis of Occupationally Related Paleopathology: Can It Be Done? In Human Paleopathology: Current Syntheses and Future Options, edited by D. J. Ortner and A. C. Aufderheide, pp. 40–47. Smithsonian Institution Press, Washington, D.C.
- 2000 Raising the Dead: The Skeleton Crew of King Henry VIII's Great Ship, the Mary Rose. Wiley, Chichester, Great Britain.

Stoddard, L.

1921 The Rising Tide of Color Against White World-Supremacy. Scribner, New York.

Stoneking, M., D. R. G. Hedgecock, L. V. Higuchi, and H. A. Erlich

1991 Population Variation of Human mtDNA Control Region Sequences Detected by Enzymatic Amplification and Sequence-Specific Oligonucleotide Probes. *American Journal of Human Genetics* 48:370–382.

- Subcommittee on Zinc, Committee on Medical and Biologic Effects of Environmental Pollutants
 - 1979 *Zinc*. University Park Press, Baltimore, Maryland.
- Subscribers for the Abolition of Slavery
 - 1787 Fair Minute Book, May 24. Archived at the British Library.
- Suchey, J. M., D. V. Wisely, R. F. Green, and T. T. Nogouchi
 - 1979 Analysis of Dorsal Pitting in the Os Pubis in an Extensive Sample of Modern American Females. *American Journal of Physical Anthropology* 51:628–640.
- Sundick, R. I.
 - 1977 Age and Sex Determination of Subadult Skeletons. *Journal of Forensic Science* 22:141–144.
 - 1978 Human Skeletal Growth and Age Determination. *Homo* 29:228–249.
- Sutherland, L. D., and J. M. Suchey
 - 1991 Use of Ventral Arc in Pubic Sex Determination. *Journal of Forensic Science* 36(2):501–511.

Swedlund, A.

1990 Infant and Childhood Mortality in the 19th Century United States: A View from Rural Massachusetts. In *Disease in Populations in Transition: Anthropological and Epidemiological Perspectives*, edited by A. Swedlund and G. J. Armelagos, pp. 161–182. Bergin and Garvey, New York.

Swofford, D.

- 1999 *Phylogenetic Analysis using Parsimony Version 4.0.* Sinauer Associates, Sunderland, Massachusetts.
- Tague, R. G.
 - 1998 Bone Resorption of the Pubis and Preauricular Area in Human and Nonhuman Mammals. *American Journal of Physical Anthropology* 76:251–267.
- Tanner, J. M.
 - 1990 Foetus into Man: Physical Growth from Conception to Maturity. Rev. ed. Harvard University Press, Cambridge, Massachusetts.
- Taylor, N. A. S., and J. G. Wilkinson
 1986 Exercise-Induced Skeletal Muscle
 Growth: Hypertrophy or Hyperplasia?

 Sports Medicine 3:190–200.

- Ten Cate, A. R.
 - 1985 Oral Histology: Development, Structure, and Function. 2nd ed. C. V. Mosby, St. Louis, Missouri.
- Thieme, F. P.
- 1957 Sex in Negro Skeletons. *Journal of Forensic Medicine* 4:72–81.
- Thieme, F. P., and W. J. Schull
 - 1957 Sex Determination from the Skeleton. *Human Biology* 29(3):242–273.
- Thilander, B.
 - 1995 Basic Mechanisms in Craniofacial Growth. *Acta Odontologica Scandinavica* 53:144–151.
- Thomas, D. H.
 - 1998 *Archaeology*. Harcourt Brace College Publishers, Fort Worth, Texas.
 - 2000 Skull Wars: Kennewick Man, Archaeology, and the Battle for Native American Identity. Basic Books, New York.
- Thomas, D. H., S. South, and C. S. Larsen
 1977 Rich Man, Poor Men: Observations on
 Three Antebellum Burials from the Georgia Coast. Anthropological Papers of the
 American Museum of Natural History Vol.
 54. Pt. 3.
- Thomas, J. A., D. L. Rimoin, R. S. Lachman, and W. R. Wilcox
 - 1998 Gracile Bone Dysplasia. *American Journal of Medical Genetics* 75:95–100.
- Tieslerbos, V. G., and R. L. B. Frausto
 2001 Head Shaping and Dental Decoration:
 Two Biocultural Attributes of Cultural
 Integration and Social Distinction among
 the Maya. *American Journal of Physical*Anthropology Annual Supplement 32:149.
- Tobias, P. V.
 - 1953 The Problem of Race Determination: Limiting Factors in the Identification of the South African Races. *Journal of Forensic Medicine* 1:113–123.
- Todd, T. W.
 - 1921a Age Changes in the Pubic Bone, I: The Male White Pubis. *American Journal of Physical Anthropology* 3:285–334.
 - 1921b Age Changes in the Pubic Bone, III: The Pubis of the White Female. IV: The Pubis of the Female Negro-White Hybrid. *American Journal of Physical Anthropology* 4:1–70.

- 1937 *The Atlas of Skeletal Maturation*. C. V. Mosby, St. Louis, Missouri.
- Tomas, G., L. Seco, S. Seixas, P. Faustino, J. Lavinha, and J. Rocha
 - 2002 The Peopling of São Tomé (Gulf of Guinea): Origins of Slave Settlers and Admixture with the Portuguese. *Human Biology* 74(3):397–411.

Torday, E.

- 1919 The Northern Babunda. Man 19:49–55.
- Torroni, A., M. D. Brown, M. T. Lott, N. J. Newman, and D. C. Wallace
 - 1995 African, Native American, and European Mitochondrial DNAs in Cubans from Pinar del Rio Province and Implications for the Recent Epidemic Neuropathy in Cuba. Cuba Neuropathy Field Investigation Team. *Human Mutation* 5(4):310–317.
- Torroni, A., O. Semino, R. Scozzari, G. Sirugo, G. Spedini, N. Abbas, M. Fellous, and A. S. Santachiara Benerecetti
 - 1990 Y Chromosome DNA Polymorphisms in Human Populations: Differences between Caucasoids and Africans Detected by 49a and 49f Probes. *Annals of Human Genetics* 54(4):287–296.

Tossi, L. L.

- 1997 Osteogenesis Imperfecta. Current Opinion in Pediatrics 9:94–99.
- Trotter, M.
 - 1970 Estimation of Stature from Intact Long Limb Bones. In *Personal Identification in Mass Disasters*, edited by T. D. Stewart, pp. 71-83. Smithsonian Institution Press, Washington, D.C.
- Trovoada, M. J., C. Alves, L. Gusmao, A. Abade, A. Amorim, and M. J. Prata
 - 2001 Evidence for Population Sub-Structuring in São Tomé e Principe as Inferred from Y-Chromosome STR Analysis. Annals of Human Genetics 65(3):271–283.
- Tsuboi, S., H. Nakagaki, Y. Takami, H. Eba, J. Kirkham, and C. Robinson
 - 2000 Magnesium and Fluoride Distribution in Human Cementum with Age. *Calcified Tissue International* 67(6):466–471.

- Turner, C. G., II
 - 1987 Late Pleistocene and Holocene Population History of East Asia based on Dental Variation. *American Journal of Physical Anthropology* 73:305–321.
- Ubelaker, D. H.
 - 1986 Estimation of Age at Death from Histology of Human Bone. In *Dating and Age Determination of Biological Materials*, edited by M. Zimmerman and L. Angel, pp. 240–247. Croom Helm, London, Great Britain.
 - 1987 Estimating Age at Death from Immature Human Skeletons: An Overview. *Journal* of Forensic Science 32:1254–1263.
 - 1989 Human Skeletal Remains: Excavation, Analysis, Interpretation. 2nd. ed. Manuals on Archeology 2. Taraxacum, Washington, D.C.
- Ubelaker, D. H., and J. L. Angel 1976 Analysis of the Hull Bay Skeletons, St. Thomas. *Journal of the Virgin Islands Archaeological Society* 3:393–420.
- Ubelaker, D. H., and L. G. Grant 1989 Human Skeletal Remains: Preservation or Reburial. *Yearbook of Physical Anthropol*ogy 32:249–287.
- Underhill, P. A.
 - 2001 The Phylogeography of Y Chromosome Binary Haplotypes and the Origins of Modern Human Populations. *Annals of Human Genetics* 65(1):43–62.
- United States Bureau of the Census
 - 1909 A Century of Population Growth: From the First Census of the United States to the Twelfth, 1790–1900. U.S. Government Printing Office, Washington, D.C.
- United States Congress. House. Committee on Public Works and Transportation. Subcommittee on Public Buildings and Grounds
 - 1992 Foley Square Construction Project and the Historic African Burial Ground, New York, NY: Hearings before the Subcommittee on Public Buildings and Grounds of the Committee on Public Works and Transportation, House of Representatives. 102nd Cong., 2nd sess., July 27, 1992 (New York City, New York), September 24, 1992 (Washington, D.C.). U.S. Government Printing Office, Washington, D.C.

- United States Department of Health and Human Services
 - 2001 Data Services, National Center for Health Statistics, Centers for Disease Control and Prevention. Electronic document, http://www.cdc.gov/nccdphp/dnpa/growth-charts/training/powerpoint/slides/011.htm, accessed June 2, 2009.

Van Cortlandt, J.

- 1771 Van Cortlandt Letterbooks, 1771–92. Manuscript on file, New York Public Library.
- Van der Meulen, M. C. H., and D. R. Carter 1995 Developmental Mechanics Determine Long Bone Allometry. *Journal of Theoretical Biology* 172:323–327.
- Van Gerven, D. P., and G. J. Armelagos
 1983 Farewell to Paleodemography? Rumors of
 Its Death Have Been Greatly Exaggerated. *Journal of Human Evolution* 12:353–360.

Van Rippen, B.

- 1918 Practices and Customs of the African Natives involving Dental Procedures. *Journal of Allied Dental Societies* 13(1):1–22a.
- Varma, R., and V. F. Johny
- 2002 Infantile Cortical Hyperostosis (Caffey's Disease). *Indian Pediatrics* 39:1057.
- Vaughn, A. T.
 - 1972 Blacks in Virginia: A Note on the First Decade. *William and Mary Quarterly*, 3rd ser. 29:469–478.
- Vigilant, L., M. Stoneking, H. Harpending, K. Hawkes, and A. C. Wilson
 - 1991 African Populations and the Evolution of Human Mitochondrial DNA. *Science* 253(5027):503–1507.
- Vivenes de Lugo, M., A. Rodríguez-Larralde, and D. Castro de Guerra
 - 2003 Beta-globin Gene Cluster Haplotypes as Evidence of African Gene Flow to the Northeastern Coast of Venezuela. *American Journal of Human Biology* 15(1):29–37.
- Von Ihering, H.
 - 1882 Die künstliche Deformirung der Zahne. *Zeitschrift für Ethnologie* 14:213–262.
- Washburn, S. L.
 - 1948 Sex Differences in the Pubic Bone. *American Journal of Physical Anthropology* 6:199–207.

- Watkins, W. S., C. E. Ricker, M. J. Bamshad, M. L. Carroll, S. V. Nguyen, M. A. Batzer, H. C. Harpending, A. R. Rogers, and L. B. Jorde 2001 Patterns of Ancestral Human Diversity: An
 - 2001 Patterns of Ancestral Human Diversity: An Analysis of Alu-insertion and Restriction Site Polymorphisms. *American Journal of Human Genetics* 68(3):738–752.

Watling, R. J.

- 1999 Novel Application of Laser Ablation Inductively Coupled Plasma Mass Spectrometry in Forensic Science and Forensic Archaeology. *Spectroscopy* 14:16–34.
- Watson, E., K. Bauer, R. Aman, G. Weiss, A. von Haeseler, and S. Paabo
 - 1996 mtDNA Sequence Diversity in Africa. *American Journal of Human Genetics*59:437–444.
- Watson, E., P. Forster, M. Richards, and H. Bandelt 1997 Mitochondrial Footprints of Human Expansions in Africa. *American Journal of Human Genetics* 61(3):691–704.

Watters, D., and J. Petersen

- 1991 The Harney Site Slave Cemetery, Montserrat: Archaeological Summary. In *Proceedings of the Thirteenth International Congress for Caribbean Archaeology, Reports of the Archaeological and Anthropological Institute of the Netherlands Antilles* No. 9, edited by E. N. Ayubi and J. B. Haviser, pp. 317–325. Archaeological and Anthropological Institute of the Netherlands Antilles, Curação.
- Watts Letter Book
 - 1762–1765 Letter Book of John Watts. Vol. 61. Collections of the New-York Historical Society. New-York Historical Society, New York
- Wax, D. D.
- 1973 Preferences for Slaves in Colonial America. *The Journal of Negro History* 58(4):371–401.
- Webb, E., S. Tauch, E. F. Green, A. Goodman, and D. Amarasiriwardena
 - 2003 Determination of Elemental Concentrations and Lead Isotope Ratios in Teeth from Solis, Mexico, Kalama, Egypt and Bronze Age Magan in Tell Abraq, UAE, by Inductively Coupled Plasma–Atomic Emission Spectroscopy (ICP-AES) and

Mass Spectrometry (ICP-MS). Paper presented at the American Chemical Society National Meeting, New Orleans, Louisiana.

Weintraub, M.

1997 Racism and Lead Poisoning. *American Journal of Public Health* 87(11):1871–1872.

Weiss, E.

2003 Understanding Muscle Markers: Aggregation and Construct Validity. *American Journal of Physical Anthropology* 121:230–240.

Weiss, K. M.

- 1973 *Demographic Models for Anthropology*. SAA Memoirs No. 27. Society for American Archaeology, Washington, D.C.
- 1993 A Tooth, a Toe, a Vertebra: The Genetic Dimensions of Complex Morphological Traits. *Evolutionary Anthropology* 2:121–134.

Wentzel, P. J.

1961 *Die Fonolgie en Morfologie van Westlike Shona.* Universiteit van Stellenbosch, Stellenbosch.

Westphal, O.

- 1995 Normal Growth and Growth Disorders in Children. *Acta Odontologica Scandinavica* 53:174–178.
- White, C. D., M. W. Spence, F. J. Longstaffe, H. Stuart-Williams, and K. P. Law
 - 2002 Geographic Identities of the Sacrificial Victims from the Feathered Serpent Pyramid, Teotihuacan: Implications for the Nature of State Power. *Latin American Antiquity* 13(2):217–236.
- White, C. D., M. W. Spence, H. L. Q. Stuart-Williams, and H. P. Schwarcz
 - 1997 Oxygen Isotopes and the Identification of Geographical Origins: The Valley of Oaxaca versus the Valley of Mexico. *Journal of Archaeological Science* 25:643–655.

White, S.

1991 Somewhat More Independent: The End of Slavery in New York City, 1770–1810. University of Georgia Press, Athens.

Whitten, N. E., Jr., and J. R. Szwed

1970 Afro-American Anthropology: Contemporary Perspectives. Free Press, New York.

Wienker, C. W.

1987 Admixture in a Biologically African Caste of Black Americans. *American Journal of Physical Anthropology* 74(2):265–273.

Wienker, C. W., and J. E. Wood

1988 Osteological Individuality Indicative of Migrant Citrus Laboring. *Journal of Forensic Science* 33(2):562–567.

Wilczak, C. A.

1998 A New Method for Quantifying Musculoskeletal Stress Markers (MSM): A Test of the Relationship between Enthesis Size and Habitual Activity in Archaeological Populations. Ph.D. dissertation, Department of Ecology and Evolutionary Biology, Cornell University. University Microfilms, Ann Arbor, Michigan.

Wilczak, C. A., and K. A. R. Kennedy

1998 Mostly MOS: Technical Aspects of Identification of Skeletal Markers of Occupational Stress. In *Forensic Osteology:*Advances in the Identification of Human Remains, edited by K. J. Reichs, pp. 461–490. Charles C Thomas, Springfield, Illinois.

Willcox, M., G. Beckman, and L. Beckman 1986 Serum Protein Polymorphisms in a Liberian Population. *Human Heredity* 36(1):54–57.

Williams, E.

1961 *Capitalism and Slavery.* Russell & Russell, New York.

Willis, W. S., Jr.

1999 Skeletons in the Anthropological Closet. In *Reinventing Anthropology*, edited by D. Hymes, with a new introduction by the author, pp. 121–152. University of Michigan Press, Ann Arbor. Originally published 1972, Pantheon Books, New York.

Wood, G. S.

1974 Revolution and the Political Integration of the Enslaved and Disenfranchised. American Enterprise Institute for Public Policy Research, Washington, D.C.

Wood, J. W., G. R. Milner, H. C. Harpending, and K. M. Weiss

1992 The Osteological Paradox: Problems of Inferring Prehistoric Health from Skeletal Samples. *Current Anthropology* 33:343–370.

- Woodward, C. V.
 - 1968 *The Burden of Southern History*. Rev. ed. Louisiana State University Press, Baton Rouge.
- Woodward, J. A.
 - 1968 The Anniversary: A Contemporary Diegueno Complex. *Ethnology* 7:86–94.
- Wright, L. E., and F. Chew
 - 1999 Porotic Hyperostosis and Paleoepidemiology: A Forensic Perspective on Anemia among the Ancient Maya. *American Anthropologist* 100(4):924–939.
- Wright, L. E., and H. P. Schwarcz
 - 1998 Stable Carbon and Oxygen Isotopes in Human Tooth Enamel: Identifying Breast-feeding and Weaning in Prehistory. *American Journal of Physical Anthropology* 106:1–18.
- Yamin, R. (editor)
- 2000 A Narrative History and Archaeology of Block 160. Tales of Five Points: Working Class Life in Nineteenth Century New York, vol. 1. Report prepared for the General Services Administration, John Milner Associates, West Chester, Pennsylvania.

- Yasar, I. M., and M. Steyn
 - 1999 Craniometric Determination of Population Affinity in South Africans. *International Journal of Legal Medicine* 112(2):91–97.
- Yeboah, E. D., J. M. Wadhwani, and J. B. Wilson 1992 Etiological Factors of Male Infertility in Africa. *International Journal of Fertility* 37(5):300–307.
- Y'edynak, G.
 - 1976 Long Bone Growth in Western Eskimos and Aleut Skeletons. *American Journal of Physical Anthropology* 45:569–574.
- Zago, M. A.
 - 2001 Rearrangements of the Beta-globin Gene Cluster in Apparently Typical Beta S Haplotypes. *Haematologica* 86(2):142–145.
- Zago, M. A., M. S. Figueiredo, and S. H. Ogo 1992 Bantu Beta S Cluster Haplotype Predominates among Brazilian Blacks. *American Journal of Physical Anthropology* 88:295– 298.

Index

Individuals who are mentioned in historical accounts but for whom no surname is given are listed here alphabetically by first name.

Key to locators: Numeral without an accompanying letter is the page number for a mention in text only; numeral followed by f refers to a figure on that page; similarly, n refers to a footnote and t to a table.

A

Abolition Society, 260 abscesses, dental, 29, 157-166 in deciduous dentition, 162–163, 165t female and male comparison, 161t, 162f, 162t in females, 160t frequencies by tooth type, 159t, 160t in Harney Site Slave Cemetery, Montserrat, sample, 39 in Hull Bay, St. Thomas, sample, 29 in males, 159t population comparisons, 163, 166t acculturation, 22, 25, 31, 32 Act to prevent aged and decrepit slaves from becoming burthensome within this Colony, An (1773), 257adinkra symbol. See Sankofa symbol Advisory Council on Historic Preservation (ACHP), 9, 10, 15, 33. See also excavation of the New York African Burial Ground: requests to end; Memorandum of Agreement Affimetryx Corporation, 91 Africa. See Central Africa; West Africa; West Central Africa "African Abroad or the African Diaspora, The" (1965), 24African American bioarchaeology, 15

African bioarchaeology, 26n

awareness toward, as a result of the New York African Burial Ground Project, 15, 273 contrasts with diasporic research traditions, 20 definition of, 20, 24–25 development and evolution of, 20, 28, 33–40 engagement of African historical analysis, 30-31, and lack of interest in African Diaspora history and culture, 25, 28, 29, 31, 39n, 40 See also African American biohistory; African Diaspora bioarchaeology; African Diaspora studies; public engagement with the New York African Burial Ground African American biohistory, 20, 32, 128. See also African American bioarchaeology; African Diaspora bioarchaeology; African Diaspora studies; public engagement with the New York African Burial Ground African American history, 255–256 critical and corrective approaches to, 22, 23, 24, 25, 42, 46, 198 African American graduate students with contributions to, 23 as a guide for bioarchaeological research, 41 as a guide for New York African Burial Ground research, 41 by the Pan-Africanist movement, 22 collaboration between black and white diasporans, 23, 24 Euroamerican contributors to, 22–23, 24, 27 formerly enslaved captives with contributions to, 20-21 individuals with contributions to, 20–22, 27–28 institutions with contributions to, 20–22 literature with contributions to, 20–22 distortions and omissions to, 21, 24, 26n, 27, 40,

256

Christianity as a defining factor, 25 desecrations to, 6, 7, 8, 9, 10 denial of the presence of blacks and slavery, 42 designation as a New York and National Historic European acculturation as a defining factor, 22, Landmark, 10, 44 25, 32 designation as the first United States National forensic studies as factor of, 40n Monument to its African founders, 10 patronizing approaches, "white" scholarship eighteenth-century North American historical perceived as, 22 evidence, as a source for, 10 plantation life as a defining factor, 31 European references regarding the uses of, 6 portrayal as an acultural and ahistorical group, history of, 3-8 22, 25, 32, 42 (see also "Myth of the Negro memorialization of, 3, 8, 10 nomination to the United Nations World Heritage prior enslavement in Africa as a misconception, Site list, 10 significance as an important site, 14, 15 significance for the African community, 4, 5, 6, 10 See also acculturation; African American bioarchaeology: lack of interest in African size estimate of, 3 Diaspora history and culture; African Diaspora See also excavation of the New York African studies; Davenport, Charles; Hooton, Earnest; Burial Ground: New York African Burial Hrdli ka, Ales; Morton, Samuel; "New Negro"; Ground; New York African Burial Ground New York African Burial Ground Project: Project; postexcavation; reinterment of remains: application of alternative research approaches; at the New York African Burial Ground New York African Burial Ground: colonial African Diaspora bioarchaeology, 10, 11, 24, 26n, African experiences, as a source for; racial focus 33, 35 in past studies; Steggerda, Morris; Types of biocultural approaches, 11-12, 13, 14 Mankind development and evolution of, 39-40 African American human rights organizations. See first bioarchaeological study of a burial site, 33 Lift Every Voice, Inc.; Malik Shabazz Human outside of the United States, 37 Rights Institute See also African American bioarchaeology; African American biohistory; African Diaspora African Americans, 8, 21, 23, 120 community development, 8 studies petition for a second "African Burial Ground," 7 African Diaspora studies political activism, 22, 31 African American graduate students, participation political views of, 8 (see also Black Consciousness movement; Black Nationalism; collaboration between black and white diasporans, Civil Rights movement; Integrationism; Leftist movement; Pan-Africanism) contrasted with African American bioarchaeology, social institutions, 3, 5, 8, 44 20 See also African American bioarchaeology; definition of, 19–20 African American biohistory; African Diaspora development and evolution of, 20-24 bioarchaeology; African Diaspora studies; as a guide for research, 41 African history; cultural practices of Africans; university programs, 20, 24 descendant community; excavation of the New See also African American bioarchaeology; York African Burial Ground: requests to end; African American biohistory; African Diaspora bioarchaeology; African history; Africanisms; African Burial Ground: significance for the African community; New York African Burial British, the: African Diaspora studies by: Ground Project: inclusion of African America Europeans: African Diaspora studies by; New students' expertise; public engagement with the York African Burial Ground Project: inclusion New York African Burial Ground; sex ratio: in of African American and African Diaspora African populations, colonial New York expertise; public engagement with the New African Anthropologist, 91 York African Burial Ground African Burial Ground, 4f Africanisms, 22, 32 boundaries of excavated area, 3 African Methodist Episcopal Zion Church, 263

African Origin of Civilization: Myth or Reality, The Akan (African ethnic group), 37, 46, 77, 110, 198, (1974), 21, 26n 257, 260, 271 African sources of enslaved labor, 71, 124 Alabama, 204 Anamaboo, 70 Alaskan natives, 208 Angola, 70, 78 Algeria, 72f, 84t Benin, 88t Algonquin (North American tribe), 76t ameloblasts, 97, 98, 143 Bight of Benin, 72f, 88t Bight of Biafra, 72f, 88t American Anthropological Association, 12, 43 Bonny, 70 American Association of Physical Anthropologists, Burkina Faso, 88t 34, 43, 92 Calabar, 88t American Dilemma (1945), 23, 24 Cameroon, 70, 88t, 89 American Museum of Natural History (AMNH), Cape Mount, 70 30, 77, 78, 79t, 108t, 271 Central Africa, 88t, 89 American Negro Academy, 21 Central African Republic, 88t American Revolution. See Revolutionary War Democratic Republic of the Congo, 78 Americas. See United States Gambia, 70 Anamaboo. See under African sources of enslaved Ghana, 78 labor: Anamaboo Gold Coast, 72f, 88t Andaman Islands, India, 79t Guinea, 88t anemia Mali, 88t in Cedar Grove cemetery, Arkansas, sample, 33 in colonial African and African American Morocco, 88t skeletons, evidence in, 35 New Calabar, 70 Niger, 88t, 89 genetic anemia, 16, 186 Nigeria, 88t, 89 in Harney Site Slave Cemetery, Montserrat, Northwest Africa, 88t sample, 39 Old Calabar, 70 in infants, 33, 265, 270 Senegal, 88t iron deficiency, 102, 185, 186, 240 Senegambia, 72f, 78, 88t parasites and, 262 Sierra Leone, 88t porotic hyperostosis and, 185–186, 240, 265 relationship with infection, test of, 244 Upper Guinea, 72f, 88t West Africa, 88t, 89 relationship with growth and stature, test of, 234, West Central Africa, 72f, 88t 241, 245, 251 Windward Coast, 88t on South Carolina plantation, 34 See also trade in enslaved Africans; West Indian sickle cell, 186, 240 sources of enslaved labor See also cribra orbitalia; porotic hyperostosis Africanus (advocate of emancipation for women Angel, J. Lawrence, 29, 29n, 30, 35, 36, 120, 147. and children), 264 See also "Bases of Paleodemography, The" Afro-American Anthropology: Contemporary Angola, 70, 72f, 78, 79t, 88, 107t, 108t. See also Perspectives (1970), 23 African sources of enslaved labor: Angola Afro-Caribbeans, 29, 92, 143, 186 Ankara, 79t Afrocentricity, 15, 26n antemortem tooth loss, 56f, 157–158, 162, 162t, Afrocentrism, 15 163, 166t Agassiz, Louis, 20 in deciduous dentition, 165t age determination extractions, a type of cultural modification, 28, in adults, 57-59, 59f 107t in children, 57, 58f female and male comparison, 161t, 162f, 162t composite age determination methods, 56–60 in females, 160t in growth studies, 228 frequencies by tooth type, 159t, 160t Ainu (Japanese ethnic group), 79t in males, 159t population comparisons, 163, 165-166, 166t

sex determination, complicating factor for, 55 in Water Island, St. Thomas, sample, 28 anthropometric methods, 54–55 Antilles, 103 Anyang, Korea, 79t Arawak (Taino; Caribbean ethnic group), 28. See also origin studies: by craniometric data "Archaeology of the African Diaspora in the Americas, The" (1995), 31 Arizona. See life expectancy: African Americans in early twentieth-century Arizona Arizona State University Dental Anthropology System, 60 Arkansas, 33, 128, 132t, 133, 134t, 136, 140, 163, 166t, 174t. See also Cedar Grove Baptist Church cemetery, Arkansas Armelagos, George, 33, 36 arthritis. See osteoarthritis Asante (African ethnic group), 39, 77. See also Ashanti Ashanti (African ethnic group), 76t, 77, 79t, 108t Asians. See Asia Asia, 25, 26n, 71, 81f, 83f, 92, 105 dispersal of inhabitants, 73, 74 See also Anyang, Korea; Butan; China; India; Japan; Korea; Nepal; Pakistan Association for the Study of African American Life and History, 21, 31 Association for the Study of Negro Life and History. See Association for the Study of African American Life and History Atayal (Taiwan ethnic group), 79t Atlanta, 130, 132t. See also Oakland Cemetery, Georgia Atlanta University, 22, 26n Atlanta University Studies, 21 Atlantic Slave Trade: A Census (1969), 32

B

Baez, Socorro, 38n
Bailey, Ronald, 31
Bakongo (African ethnic group), 108t, 271
Bantu (language), 73, 76t, 89
Barbadian burial site, 28. *See also* craniometrics:
comparisons between Barbadian and Gabon
burials; origin studies: by craniometric data
Barbadian sugar plantation, 130, 262
Barbados, 28, 39, 96, 108t, 117, 128, 219. *See also*Barbadian burial site; Barbadian sugar plantation

"Bases of Paleodemography, The" (1969), 120 Bastide, Roger, 22 BaSuku (African ethnic group), 76t Beck, Jeanne, 91 Belleview Plantation, South Carolina, 34n, 166t Benin, 72f, 76t, 84t, 88, 90t. See also African sources of enslaved labor: Benin Berg, Sweden, 79t. Bight of Benin, 92. See also African sources of enslaved labor: Bight of Benin Bight of Biafra, 92. See also African sources of enslaved labor: Bight of Biafra Bioanthropology Research Laboratory, University of Maryland, 89 bioarchaeological studies. See African American bioarchaeology; African Diaspora bioarchaeology Biohistory of 19th-Century Afro-Americans: The Burial Remains of a Philadelphia Cemetery, A (1997), 36biological distance analyses. See origin studies biomechanical stress in children, 246, 252, 253 craniosynostosis, co-occurrence, 247, 249t fractures, as evidence of stress, 204, 206-208, 222f, 245, 246t and long-bone flattening, test of relationship, 247, 252, 253t os acromiale, as possible evidence for stress, 35 osteoarthritis and osteophytosis, as evidence for stress, 203-204 Schmorl's nodes, 204, 206 spondylolysis, 206–208 See also degenerative changes; enthesopathies; hypertrophies; musculoskeletal stress markers (MSM); osteoarthritis Black Consciousness movement, 8, 24, 32 Black Family in Slavery and Freedom, The (1976), 32 Black Folk Here and There (1987, 1990), 23 Black Folk Then and Now, 23 Black Metropolis (1945), 23 Black Nationalism, 8 Black Power, 24 Black Studies programs, 20, 24. See also African Diaspora studies Blakey, Michael, 9, 19n, 35, 51f, 147 director of New York African Burial Ground research, 3, 12, 17, 34, 36, 91, 97, 153 See also Howard University; New York African Burial Ground Project: research design:

redrafting by Michael Blakey and research team

Australia, 74, 79t, 81f, 83f, 105

Back-to-Africa movement, 8

Boas, Franz, 22, 23, 27, 40. See also African history: critical and corrective approaches to; Boasian school; Boasians Boasians, 15, 22, 23, 24, 27, 40. See also Boas, Franz Boasian school, 15. See also Boas, Franz bone chemistry analysis. See elemental signature analysis (ESA); trace element analysis; isotopic analysis Bonny. See under African sources of enslaved labor: Bonny Boston, 198, 260 Boylston, Zabdiel, 260 Bransby Plantation, Montserrat, 39 Brazil, 21, 23, 92 Britain. See British, the British, the, 105, 106, 257, 272 African Diaspora studies by, 20 departure from New York after Revolutionary War, 8, 258 occupation of West Indian islands, 28, 257, 267, 271 trade in human captives from Africa, 20, 153, 256 See also British social anthropology; English, the; Europeans; Irish, the; manumission: in exchange for British military service; Scotland; trade in enslaved Africans: by the British British social anthropology, 15, 23 Broadway, 3 Bronze Age, 204 Buffalo (Native American tribe), 249t Burial 6, 90t, 108t, 109t, 111t, 112, 113f, 114, 116f, 189f Burial 7, 90t, 109t, 113f, 116f, 146f, 241t Burial 9, 90t, 108t, 109t, 112, 113f, 114, 116f, 146f Burial 11, 90t, 207, 208, 208t, 210f Burial 12, 90t, 165, 168f Burial 20, 59f, 90t, 172f Burial 22, 109t, 112, 113f, 116f, 243t Burial 23, 88, 108t, 109t, 112f, 113f, 114, 116f Burial 25, 90t, 222, 224-226, 225f, 246t Burial 32, 90t, 179, 181f, 226 Burial 35, 99f, 109t, 113f, 116f, 241t, 243t, 248t Burial 37, 90t, 207–208, 208t Burial 39, 57f, 109t, 113f, 116f, 164f, 167f, 189f, 241t, 243t, 246t, 248t Burial 40, 58f, 90t, 201f, 209f, 211f Burial 43, 109t, 113f, 116f Burial 45, 109t, 113f, 116f

Burial 47, 90t, 108t, 109t, 112, 113f, 114, 116, 116f

Burial 55, 109t, 113f, 116f, 241t, 243t

Burial 58, 90t, 243t, 246t, 248t Burial 63, 90t, 201f, 203f Burial 64, 187f, 241t, 251 Burial 91, 241t, 243t, 248t Burial 95, 158, 158f, 246t, 248t Burial 96, 229, 239t, 246t, 248t Burial 97, 88, 90t, 207, 208, 208t Burial 101, 64, 90t, 108t, 109, 109t, 110, 112, 113f, 114, 116, 116f, 163f, 182f Burial 106, 108t, 109t, 112, 113f, 114, 116, 116f Burial 107, 90t, 163f, 207, 207f, 208t, 222f Burial 115, 90t, 108t, 109t, 113f, 114, 116f Burial 122, 90t, 239t, 241t, 243t, 246t, 248t Burial 126, 109t, 113f, 116f Burial 137, 6, 6f, 109, 109t, 112, 113f, 114, 116f. See also trauma: burning at the stake, possible evidence for Burial 138, 58f, 90t, 109t, 113f, 116f, 187f, 241t, Burial 151, 90t, 108t, 188f, 222 Burial 160, 112, 109t, 113f, 116f Burial 165, 111, 108t, 109t, 113f, 114, 116f Burial 167, 109t, 113f, 116f Burial 169, 109t, 113f, 116f Burial 180, 91t, 109t, 113f, 116f, 223, 243t, 246t, 248t Burial 205, 223, 224f, 239t, 241t, 246t Burial 219, 91t, 109t, 112, 113f, 116f, 243t, 246t Burial 236, 109t, 113f, 116f Burial 241, 108t, 114, 158f Burial 244, 109t, 113f, 116f, 246t Burial 252, 57f, 241t, 243t, 248t Burial 253, 223, 224f, 243t, 246t, 248t Burial 259, 239t, 243t, 246t Burial 266, 101f, 108t, 109t, 112, 113f, 114, 116, 116f, 163f Burial 270, 108t, 109t, 113f, 114, 116f Burial 281, 108t, 109t, 113f, 114, 116f Burial 286, 109t, 113f, 116f Burial 304, 109t, 113f, 116, 116f Burial 323, 7, 7f. See also burial population of the New York African Burial Ground: possible non-African or ambiguous burials; dissection; grave robbing Burial 340, 91t, 108t, 109t, 112, 113f, 116, 116f Burial 343, 239t, 241t, 243t, 246t, 248t Burial 354, 6. See also trauma: burning at the stake, possible evidence for Burial 366, 108t, 109t, 113f, 114 Burial 367, 108t, 109t, 113f, 114, 116, 116f Burial 368, 241t, 246t, 248t

Burial 383, 239t, 243t, 246t, 248t burial sites of Africans, accidental discovery of, 28, Burial 405, 109t, 113f, 116, 116f, 246t, 248t 29, 30 Buriat, Siberia, 79t Burial 427, 239t, 243t, 246t, 248t burial population of the New York African Burial Burkina Faso, 88. See also African sources of Ground enslaved labor: Burkina Faso eighteenth-century North American historical Bush, President George W., 10 evidence, as a source for, 10 Bushman, 79t estimated number of possible burials, 70 Butan, Asia, 92 head-foot orientation, 39 Buxton, L. H. D., 28, 108t impacts to burials, 7 possible Native American burials, 75 possible non-African or ambiguous burials, 7 (see Calabar, 76t, 88t, 108t. See also African sources of also Burial 323) enslaved labor: Calabar total number of skeletal remains excavated, 3, 10, California, 76t, 87, 88 47, 49, 70, 121, 132t, 170, 174t, 200 Cameroon, 76t, 84t, 88, 92, 107t See also dissection: possible case at the New York as a site for the first DNA bank in Africa, 70, 91, African Burial Ground; Howard University: transfer of remains to; infants; life expectancy: See also African sources of enslaved labor: in New York African Burial Ground sample; Cameroon New York African Burial Ground: reinterment Cameroon Academy of Sciences, 91 of remains: at the New York African Burial Cameroon Ministry of Health, 91 Ground; Ties That Bind Ceremony Cameroon Ministry of Tourism, 91 burial sites in Central America Cameroon Prime Minister's Office, 91 Oaxaca sugar plantation cemetery, 38n Canada, 8, 27 burial sites in North America fur traders, 219 discovery of, by way of construction projects, 3, See also Algonquin; Nova Scotia 8, 9, 10, 11, 30–31, 33, 34, 132–133 Cape Mount. See under African sources of enslaved See also African Burial Ground; African labor: Cape Mount Methodist Episcopal Zion Church; Belleview Cape Province, South Africa, 208 Plantation, South Carolina; Catoctin Furnace Cape Town, South Africa, 26n, 106, 108t ironworks, Maryland; Cedar Grove Baptist Capitalism and Slavery (1971), 256 Church cemetery, Arkansas; Charleston elites, Carabelli's cusp, 82, 82t, 84 South Carolina; Christie Street Cemetery; Clifts Caribbean, the, 28, 39, 44, 46, 105, 106, 143, 185, Plantation, Virginia; Cypress Grove Cemetery, 271 New Orleans; Hull Bay, St. Thomas; First culture in, 21 African Baptist Church Cemetery (FABC); Diasporic populations in, 13, 19 Kingsley Plantation, Florida; Mount Pleasant enslaved groups and plantations in, 37, 38, 96, Plains; New York African Burial Ground; 97, 106, 117, 124, 125, 126, 130, 131, 139, 185, Remley Plantation, South Carolina; Rochester 262, 264, 267, 271 Poorhouse, New York; Site 38CH778, South geology of, 103 Carolina; Seneca Village, New York; Trinity as intermediary between Africa and New York, 71, Anglican Church; Water Island, St. Thomas 73f, 95, 104, 117, 149, 153, 255, 256, 269 burial sites in the Caribbean. See Barbadian burial See also Afro-Caribbeans; syphilis: eighteenthsite; Bransby Plantation, Montserrat; Guadaloupe, century New York compared to Caribbean; West French West Indies, cemetery; Harney Site Slave Indian sources of enslaved labor: Caribbean Cemetery, Montserrat; Jamaican burial site; caries, dental Newton Plantation, Barbados; Seville Plantation, in deciduous teeth, 165t Jamaica definition of, 157, 158 burial sites in South America. See Waterloo and diet, 161, 162, 166 Plantation, Suriname in females, 160t, 161 female and male comparison, 161t, 162f, 162t

in First African Baptist Church sample, 163, 166t frequencies by tooth type, 158, 159t, 160t in Harney Site Slave Cemetery, Montserrat, sample, 39

in Hull Bay, St. Thomas, sample, 29 in males, 159t

population comparisons, 163, 166t in subadults, 164, 164f, 164t

Carnegie Foundation, 24

Case Western Reserve University, 27

Catholicism. *See* Christianity; enslaved Africans in the Caribbean: investigations of, by Spanish Catholics; Native Americans: investigations of, by Spanish Catholics; Trinity Anglican Church: ban on African, Jewish, and Catholic burials within

Catholics, 20

Catoctin cemetery

population sample of, 130, 132t, 133, 134, 134t, 140, 147, 148t, 167t, 174t, 195, 220, 220t, 221, 226

See also enamel hypoplasias: population comparisons; mortality rates: in Catoctin Furnace ironworks, Maryland, sample; porotic hyperostosis: population comparisons; rickets: population comparisons; trauma: in Catoctin Furnace ironworks, Maryland, sample

Catoctin Furnace ironworks, Maryland, 35, 133, 140, 147

Cedar Grove Baptist Church cemetery, Arkansas, 33, 34, 134t, 135, 135t, 136, 139, 140, 170, 171, 174t, 175–179, 186, 191t, 192–194, 196–198 acceptance for listing in the National Register of Historic Places, 33

See also under anemia; degenerative changes; fractures; infectious disease; life expectancy; malnutrition; mortality rates; periostitis; population comparisons; porotic hyperostosis: population comparisons; rickets; scurvy; trauma

cementum, 96, 97, 98–100, 99f, 99t, 100f Center City, Philadelphia, 133

Centers for Disease Control (CDC), 116, 230, 231, 231n, 234, 237–238, 250

Central Africa, 26, 70, 74, 75, 76t, 77f, 87, 88–92, 269, 272. *See also* African sources of enslaved labor: Central Africa; DNA: West and Central Africa, as a source of New York African Burial Ground genetic diversity

Central African Republic, 88, 88t, 107t. *See also* African sources of enslaved labor: Central African Republic

Central America. *See* trade in enslaved Africans: Central American export sites

Centre Street, 3

Chad, 84t

Chambers Street, 3

Charity Hospital of New Orleans, 34. *See also* Cypress Grove Cemetery, New Orleans

Charleston, South Carolina, 34, 34n, 117, 126, 132, 147, 148t, 166t, 220t

Charleston elites, South Carolina, 166t

chattel slavery, 5, 20, 32, 44, 256, 273. See also enslaved labor

Chicagoans. *See* Chicago school; University of Chicago

Chicago school (of social anthropologists), 22–24, 26n

Child Research Council, Denver, Colorado, 229 China, 81, 81f, 83f, 92, 105. *See also* Hainan, China Christianity, 6, 25, 46

African participation in, 8

forced conversion of enslaved Africans, 5
prevention of conversion to deny human rights, 5
See also African history: distortions and omissions
to: Christianity as a defining factor; enslaved
Africans in New York: exclusion of blacks
from burial with whites in a Christian space;
justification of slavery and inequality, efforts
toward: religious justification; manumission:
conversion to Christianity in exchange for

Christie Street Cemetery, 263

cimarrones. See maroons

City Hall, 3

Civil Rights movement, 5, 8, 21, 22, 24, 27, 28, 32 "Claims of the Negro Ethnologically Considered, The," 20

Cayton, Horace R., 23

Clifts Plantation, Virginia, 117

Cobb, W. Montague, 21, 23, 27, 27f, 28, 37, 40, 198

Cobb Laboratory. *See under* W. Montague Cobb Biological Anthropology Laboratory

Colden, Cadwallader, 257

Cole, Johnetta, 22, 36

Collect Pond, 3, 4f

College of William and Mary, 18, 61. *See also* Institute for Historical Biology, College of William and Mary

Colombia, South America, 73f, 92

"Colonial to Modern Skeletal Change in the U. S. A.," 29, 35

Colored Benevolent Association, 39n Columbia University, 22, 23, 24, 28

Columbians. See Columbia University	Crummell, Alexander, 21
Comas, Juan, 38n	Cuba, 21, 108t
Common, the, 3, 4f, 6, 7	geology of, 103
Congo, 72f, 79t, 84t, 88, 92, 108t. See also	See also culturally modified teeth: in Cuba
Democratic Republic of the Congo; Kongo	Cugoano (freed or escaped captive African), 20
Congressional Subcommittee on Transportation and	culturally modified teeth, 26n, 143
Grounds, 12	African birth, as possible reason for, 28, 28n, 96,
Congress of the Pan-African Association for	105, 106, 107, 108, 112, 115, 117, 143, 270
Prehistory and Related Studies, 31n	as a biocultural practice, 107–108
Connecticut, 76t, 100, 110	in Cuba, 29
Coramantine, 106	chemical comparison to nonmodified teeth
Coriell Institute for Medical Research, 91, 93t	elemental signature analysis, 109–114, 113f, 116,
cotton	116f
industry, 33, 38, 255	strontium isotope analysis, 114–115, 115f
plantations, 37	continuance of, 105, 112
cranial modification, 28n	dental mutilation, 28n
as a Taino cultural practice, 28	discontinuance of, 106, 108
craniometrics, 69–80	enamel hypoplasia frequency in, compared to
analysis for explaining African remains among the	unmodified teeth, 154-155, 155t, 156
Arawak, at the Jamaican burial site, 28	history and description of, 105-106
comparisons between Barbadian and Gabon	hostility toward slaveowners, viewed as, 105, 106
burials, 28	as a marker of African social identity, 106
environmental causes of cranial development in	maroons, association with, 29
blacks and whites, 27	mean age at death, compared to unmodified
testing for the presence of Taino individuals, in	individuals, 155
Water Island, St. Thomas, 28	in Newton Plantation, Barbados, sample, 38, 105,
See also cranial modification; craniosynostosis;	106, 108
Gliddon, George; Hamman-Todd Collection;	pipe notches, 39, 62t, 145
justification of slavery and inequality, efforts	prohibition of, by Europeans, 105
toward: in craniometric studies; Morton,	in runaway advertisements as a descriptor, 106
Samuel; Nott, Josia; origin studies: by	types of modifications, 107t, 108t, 154f
craniometric data; racial classification and	in Water Island, St. Thomas, remains, 28
ranking: in craniometrics; racial focus in past	as a West Indian cultural practice, 28, 28n
studies: in craniometrics; Todd, T. Wingate;	See also antemortem tooth loss: a type of cultural
Types of Mankind	modification
craniosynostosis	cultural practices of Africans, 39, 95, 96, 105, 106,
definition of, 228	199. See also cranial modification; culturally
nutritional and biomechanical stress as possible	modified teeth
factors, 164, 234, 247	cultural resources management (CRM), 30, 34,
relationship with stress and infection, tests of,	35
249t, 253	Curtin, Philip, 32
by suture, 248t	Cypress Grove Cemetery, New Orleans, 34
Crawford, Michael, 89	
cribra orbitalia	D
active lesions, 186, 192	Damara, 108t
definition of, 186, 189f, 240	Danes (Danish), 74, 84t. See also Denmark
distribution by age and sex, 190t, 191t	Davenport, Charles, 26
population comparisons, 186, 186n, 191f, 191t,	David C. Driskell Center for Diaspora Studies,
198	University of Massachusetts, 93t
See also porotic hyperostosis	Davis, Allison, 23, 54f
Crisis, The, 21	

Day, Caroline Bond, 26n. See also Study of Some	descendant community, 9, 12, 13, 14, 15, 16, 17,
Negro-White Families in America, A	19, 37, 41–46, 69, 108, 118, 189
degenerative changes, 17, 55	indignation toward African Burial Ground
in African Diaspora skeletal series, 130	excavations, 12, 15, 37
in age determination, 56–59, 199	See also General Services Administration (GSA):
in appendicular skeleton, 208–213	engagement with descendant community over
and biomechanical stress, 203–204	New York African Burial Ground research; New
in Cedar Grove cemetery, Arkansas, sample, 33	York African Burial Ground Project: topics
in Harney Site Slave Cemetery, Montserrat,	of interest to the public; public engagement
sample, 39	with the New York African Burial Ground:
scoring methods, 200	descendant community as an ethical client
and spondylolysis, 208t	Diamond, William, 8
in vertebrae, 35, 200–204	Dickson Mounds, Illinois, 152
in young adults, 202, 202f, 203, 210	diet
See also biomechanical stress; osteoarthritis;	caries formation, as factor in, 17, 161, 162, 240
Schmorl's nodes	in colonial period, 161, 162
de la Calle, Rivero, 29	effect of lead in, 270
Delany, Martin, 21	essential trace elements, 101–105
Delaware (state), 35, 76t	reconstruction of, 101-102, 102f, 161, 162, 166
Delaware (ethnic group), 271	See also malnutrition; nutrition
Democratic Republic of the Congo, 76t, 78, 107t,	Diggs, Irene, 21
108t. See also African sources of enslaved labor:	Dimintyeye, Charles, 91
Democratic Republic of the Congo	Dinkins, David, 8, 9, 10, 11f, 12
Denmark, 92. See also Danes (Danish)	Diop, Cheikh Anta, 21, 26n
dental mutilation. See under culturally modified	direct trade with Africa. See under trade in enslaved
teeth: dental mutilation	Africans
dentin, 96-101, 99f, 99t, 105, 114	disease. See infectious disease
vs. enamel strontium values as means of detecting	dissection, 7, 27, 30, 34
migration, 115–117, 115f	in Cypress Grove Cemetery, New Orleans, 34
dentition	possible case at the New York African Burial
in age estimation, 57, 58f	Ground, 7, 7f
chemical analyses of, to determine birthplace	See also Burial 323; grave robbing
and evidence of migration, 80, 85, 96, 97–98,	DNA, 16, 17, 52
103–113, 115f	African DNA bank, 70, 91–92, 272
crowding, 164, 167f	contamination of samples, methods to eliminate,
deciduous, 58	64, 86, 87
detecting lead exposure in, 105	extraction and isolation methods, 9, 53, 63, 85–88
development of, 98–99, 143	mtDNA
development of, 98–100	African origins, test of, 73, 74, 90t–91t
Hutchinson's incisors, 38	maternal affiliations, as indicator of, 70
hypercementosis, 38, 39, 96	West and Central Africa, as a source of New York
hypodontia, 163, 164, 165, 167f	African Burial Ground genetic diversity, 69–70,
Moon's molars, 38	90t
morphology, 82t	See also National African DNA bank; origin
pipe notches, 39	studies: by molecular genetics
recording methods, 60–61, 62t, 158f	Doctors' Riot (1788), 6, 7, 10. See also grave
supernumerary tooth, 163, 165, 168f	robbing
See also abscesses, dental; antemortem tooth loss;	Dodson, Howard, 11f, 12
Carabelli's cusp; caries; cementum; culturally	Dogon (African ethnic group), 76t, 79t. See also
modified teeth; dentin; odontoblasts; origin	Mali
studies: by dental traits	Dominase, 110. See also Ghana: excavations within

Dominica, 70	enamel hypoplasias
geology of, 103	in African Diaspora skeletons, 29, 36, 130, 131
Douglass, Frederick	biocultural interpretations of, 153-154, 156
counterargument to racial ranking presented in	causes, 97, 143–144
Types of Mankind, 20, 25	chronology of, 97, 145, 147t, 151–153
efforts to correct African American history, 5, 24,	in culturally modified teeth, 154, 155t
40, 42	in deciduous teeth, 145, 146f, 148t, 149, 155, 156
report on the enslaved life of, 20–21	definition of, 143–144, 144f, 146f
Drake, St. Clair, 12, 23, 24	and enamel hypocalcification, 145t, 156
Dschagga (African ethnic group), 76t	female and male comparison, 36n, 147, 147t, 149t,
Duane Street, 3	152t
Du Bois, W. E. B., 21, 22, 23, 26, 27	in Harney Site Slave Cemetery, Montserrat,
Dunham, Katherine, 21	sample, 39
Dutch, the, 44, 74, 78, 126, 256, 271, 272. See	and infectious disease, 144
also Dutch Reformed Church; trade in enslaved	in Newton Plantation, Barbados, sample, 38
Africans: by the Dutch	population comparisons, 29, 147–151, 148t
Dutch Reformed Church, 124	recording methods, 144–145
E	stress, as evidence of, 38, 97, 130, 143, 149–150, 153–155, 156, 164, 164f, 270
Easter Island, 79t	in third molars, 149-150, 150f, 152t, 270
eburnation. See osteoarthritis	and weaning, 36n
Eden Cemetery, Philadelphia, 35	England. See English, the
Edwards, Jerome Otto, 64f	English, the, 74, 84t, 260
Eguafo, Ghana, 110	colonies of, 10, 78, 198, 256
Egypt, 21, 23, 25, 26n, 79t. See also Nile Valley;	population comparisons with Africans, 34, 39,
Nubia	127, 128, 270, 271, 273
Egyptians, 25	responses to African rebellions, 258, 264, 269
Egyptology, 20	slaveholders, 10, 18, 39, 256, 271
elemental signature analysis (ESA), 97, 102, 103,	See also British, the; Euroamericans; Europeans;
106–109, 112, 113f, 114, 115	Trinity Anglican Church: burial records for
iron, 102	English slaveholding populations
laser ablation (microsampling method), 98, 99f, 100, 100f, 110	enslaved Africans in the Caribbean, 37, 153, 185, 270–271
lead, 100f, 105, 116, 116f	investigations of, by Spanish Catholics, 20
strontium and barium, 101	See also African history: critical and corrective
zinc, 102	approaches to: formerly enslaved captives with
See also bone chemistry analysis; diet:	contributions to; enslaved labor; maroons; sex
reconstruction of; inductively coupled-plasma	ratio: in enslaved populations
mass spectrometry; origin studies: by elemental	enslaved Africans in New York, 17, 19, 20, 34n, 37,
signature analyses; trace element analysis	38n, 44, 70, 71, 73f, 75, 97, 102, 120, 121, 126,
Elk Street, 3	128, 172, 185, 224f, 227, 256, 257, 264, 272, 273
emancipation. See manumission	advertisements of, 153, 256, 261, 263 (see also
Embassy of the Republic of Cameroon, 91. See also	runaway advertisements)
Cameroon	attempts to dehumanize, 5, 27, 40, 42, 256, 272
enamel hypocalcification, 144f, 155–156, 157	control over the activities of, 5, 6, 154, 156 (see
amelogenesis imperfecta, form of, 163–164	also under laws, regulations, and ordinances)
in deciduous vs. permanent dentition, 155–156	exclusion of blacks from burial with whites in
definition of, 143	Christian spaces, 5, 6
and enamel hypoplasias, 145t, 155t, 156, 164	languages, suppression of, 5
females and male comparison, 155	marketability of, 153, 269
stress, as evidence of, 156	purchase of, 185, 257

renaming of, 5 epidemics. See measles; smallpox; yellow fever selling of, 5, 153, 258, 261 Equiano (freed or escaped captive African), 20 separation of families, 5, 153 Eskimo, 79t See also African history: critical and corrective Essomba, Joseph-Marie, 91 approaches to: formerly enslaved captives with Ethiopia, 24n, 92 contributions to; enslaved labor; maroons; eugenics, 25 runaways; sex ratio: in enslaved populations anti-eugenic concerns, 27 enslaved Africans in North America, 70, 71, 74, 88, biological research on mixed-race families, 26n 88t, 89, 95, 96, 106, 117, 118, 148t, 166t, 195, research on the deleterious effects of 199, 220t, 221, 251, 271 miscegenation, 26 demography, nutrition, and health of, 32 sociological research on mixed-race families, 26n See also African history: critical and corrective Euroamericans. See African history: critical approaches to: formerly enslaved captives with and corrective approaches to: Euroamerican contributions to: enslaved labor: maroons: contributors to; racial focus in past studies: Nova Scotia: relocation of enslaved Africans Euroamerican racial reductionism to; Revolutionary War: participation of Africans Europe. See Europeans in military forces; sex ratio: in enslaved Europeans, 26n, 27, 35, 43, 44, 84t, 88, 92, 93t, populations 110, 124, 230 enslaved labor admixture with Africans, 256 African participation in, 43–44 African Diaspora studies by, 22, 25, 40, 41 arduous labor (see biomechanical stress) attempts to dehumanize Africans, 5 born into slavery, 151, 153, 154 colonialism and of economic regime of, 17, 198, child labor, 199, 253 269, 271 domestic labor, 34, 44, 117, 126, 133, 153, 199, comparison of remains with New York African 221, 257, 262, 264 Burial Ground population, 38, 70, 71, 73, economic importance of, 255, 256, 257 74–75, 76t, 77f, 78, 78f, 80, 81, 81f, 83f, 85, industrial labor, 132t, 174t, 220, 220t 126-128, 139, 198, 214, 260-263, 272-273 plantation enslavement, 132t, 174t, 220t, 256 commentary on African burial practices, 105 political economic effects on, 265, 266f, 267 migration to New York, 8 rural enslavement, 39, 126, 132t, 174t, 199, 220, slaveholders, 267 221 use of the African Burial Ground as a dump, 6 See also African Burial Ground: European sparse records for, in the Americas, 20 urban enslavement, 132t, 119, 174t, 199, 219, 221, references regarding the use of; racial 256, 259 classification and ranking: characteristic of variability, 199, 208 European studies See also African history: critical and corrective Ewe (African ethnic group), 37 approaches to: formerly enslaved captives with excavation of the New York African Burial Ground, contributions to; chattel slavery; indentured 3, 4f, 7, 11, 11f servitude; justification of slavery and inequality, archaeologists involved with (see Historic efforts toward: religious justification; trade in Conservation and Interpretation [HCI]; John enslaved Africans Milner Associates; Metropolitan Forensic enthesopathies Anthropology Team [MFAT]) and arthritis, 246t, 247t halt of, 3, 8, 10, 12 biomechanical stress, as evidence of, 213, 221, history of, 3–8 234, 245, 247, 247t, 252, 253, 265 recommendations to the General Services in children, 246, 246t, 247, 252 Administration for continuation, by the Federal Advisory Steering Committee, 9–10 craniosynostosis, test of correlation, 249t requests to end, 3, 8–9, 15 definition of, 213 See also National Historic Preservation Act of 1966: distribution by age and sex, 246t and hypertrophic attachments, 246, 246t, 247 Section 106; New York African Burial Ground and long-bone flattening, 247, 253t Project; postexcavation; 290 Broadway site

executions, 6	depression fractures, 1841
as a result of the 1712 Uprising, 3	female and male comparison, 205t, 223, 223t,
	246t
F	in First African Baptist Church Cemetery,
Fairbanks, Charles, 31	Philadelphia, sample, 35
Federal Advisory Steering Committee, 9–10, 12, 15	in Harney Site Slave cemetery, Montserrat,
Ferrell, Robert, 89	sample, 39
fertility	in Hull Bay, St. Thomas, sample, 29
in the Caribbean, 38	parry fractures, 35, 226
estimates for late-seventeenth- through early-	perimortem fractures, 204, 205t, 222, 222f, 223–
eighteenth-century New York Africans, 264	226, 223t, 224f
reduced rate, 262, 265, 267, 270–271	radiographs, in assessment of, 49, 53, 61, 63, 164,
in Suriname, 38	167f, 185, 186, 234, 240
Firenze, City of, 76t	ring, 222f
Firmin, Antenor, 21, 40	scoring methods, 222
	by skeletal element, distribution of, 205t
First African Baptist Church (FABC) Cemetery,	by skeletal region, distribution of, 223, 223t
Philadelphia, 35, 36, 132t, 133, 134, 134t,	spiral, 225, 225f
135, 135t, 136, 139, 140, 147, 148t, 149, 151,	spondylolysis, 206–208
163, 166t, 170, 171, 174t, 175, 176, 176t, 178,	in St. Catherine's Island, Georgia, sample, 30
179, 186, 191t, 192, 193–196, 197, 197t, 251,	in subadults, 223, 224f, 246, 246t
252, 271. <i>See also under</i> abscesses, dental:	in teeth, 157
population comparisons; antemortem tooth	violence, as evidence of, 35, 222f, 224–226, 225f
loss: population comparisons; caries, dental:	France. See French, the
population comparisons; Eden Cemetery; enamel	Francophone regions, 21, 91
hypoplasias: population comparisons; fractures;	Franklin, John Hope, 22. See also <i>From Slavery to</i>
growth; infectious disease; life expectancy:	
population comparisons; malnutrition; mortality	Freedom: A History of Negro Americans
rates; osteoarthritis; periostitis: population	Frazier, E. Franklin, 23, 26
comparisons; porotic hyperostosis: population	Frederick County, Maryland, 132. See also Catoctin
comparisons; reinterment of remains; stature:	Cemetery; Catoctin Furnace ironworks, Maryland
population comparisons; trauma	free Africans, 5, 6, 8, 20, 21, 33, 35, 117, 124, 125t,
Florida, 31	126, 130, 134, 151, 170, 174t, 198, 199, 221, 255,
Foley Square, 3, 9	256, 261t, 269
Foley Square Federal Office Tower Building, 9. See	in Arkansas, 32, 33, 163
also 290 Broadway site	freeborn, 132t, 133, 147, 156, 174t
Fon (language), 37	quality of life after emancipation, 33
forensic anthropology, 7, 11, 26, 29, 33	See also population counts of Africans: free
biocultural methods, in contrast to, 11–12, 29, 33,	Africans
37, 39–40, 40n	French, the, 74, 76t, 131. See also Francophone
in Cypress Grove Cemetery, New Orleans, 34	regions; French West Indies; Guadaloupe,
in Harney Site Slave Cemetery, Montserrat, 39	French West Indies, cemetery; Lyon, City of,
in the New York African Burial Ground, 27	France; racial focus in past studies: French racial
process and the uses of, 40n	reductionism
See also African history: distortions and	French West Indies, 75. See also Guadaloupe,
omissions to: forensic studies as a factor;	French West Indies, cemetery
racial classification and ranking: in forensic	From Slavery to Freedom: A History of Negro
anthropology	Americans (1974), 22
fractures	Froment, Alain, 69, 76t, 89
biomechanical stress, as cause of, 29, 204, 206-	Fulbe (African ethnic group), 90t–91t
207, 222f, 245, 246t	Fuller, Douglas, 51f
in Cedar Grove cemetery, Arkansas, sample, 33	

G	dietary deficiencies and, 102
Gabon, 28, 72f, 76t, 77, 79t, 84t, 88	females compared to males, 238, 239f
Gambia, 72f. See also African sources of enslaved	in First African Baptist Church Cemetery,
labor: Gambia	Philadelphia, sample, 35
Gambia River, 72f	health, as indication of, 18, 227, 229, 247, 251,
Garvey, Marcus, 21	253
General Services Administration (GSA), 3, 12, 14,	impaired, 238–239, 253, 269, 270
16, 17, 18, 43, 45, 47, 85, 92n, 117n	infection, test of association with, 242-244, 244t,
dismissal of African American descendant	251
community views regarding the New York	porotic hyperostosis, test of association with,
African Burial Ground Project, 12	240–242, 242t, 251
dismissal of requests to end excavation, 8–9 (see	in South Carolina plantation sample, 34
also excavation of the New York African Burial	standardization of long-bone lengths, 229–230,
Ground: requests to end	235, 251
engagement with descendant community over	See also stature
New York African Burial Ground research, 45	Guadaloupe, French West Indies, cemetery, 75, 766
expeditious excavations perceived as desecration	78f
of the New York African Burial Ground, 8, 10,	Guam, 79t, 105
43, 45	Guamanians. See Guam
See also excavation of the New York African	Guinea, 72f, 92, 107t. See also African sources of
Burial Ground: recommendations to the General	enslaved labor: Guinea; Guinea-Bissau; Gulf of
Services Administration for continuation, by	Guinea; Upper Guinea
the Federal Advisory Steering Committee;	Guinea-Bissau, 72f. See also Guinea
Memorandum of Agreement	Gulf of Guinea, 37
Georgia, 26n, 30, 106, 132t	Gutman, Herbert, 32
Germans. See Germany	
Germany, 74, 92	H
Ghana, 44, 76t, 77, 78, 79t, 84t, 88, 92, 109, 109t,	Hainan, China, 79t
110, 112, 113t, 114, 115, 115f	Haiti, 21
excavations within, 109, 110	Hamann-Todd Collection, 27
See also Ashanti; Dominase; Eguafo, Ghana; Ewe	Hammerschmidt, John Paul, 9
Ghanaian National House of Chiefs, 44	Hampshire College, 100, 118
Gliddon, George, 25	Hansberry, William Leo, 21
Global Dimensions of the African Diaspora (1993), 24n	haplogroups, 73, 74, 88–92, 90t, 91t, 93t. <i>See also</i> origin studies
Gold Coast, 77, 79t, 92, 108t, 271. See also African	Harare, Zimbabwe, 31n
sources of enslaved labor: Gold Coast	Harlem Renaissance, 8, 21, 23
grave robbing, 27	Harlem State Government auditorium, 43
petitions and warnings against, 6	Harney Site Slave Cemetery, Montserrat, 39.
possible case at African Burial Ground, 7	See also under abscesses, dental; anemia;
See also Burial 323; dissection; Doctors' Riot	caries, dental; degenerative changes; enamel
Greece, 35, 255	hypoplasias; forensic anthropology; fractures;
Greenland, 73f, 84t, 104	malnutrition; periostitis
Grenada, West Indies, 105, 108t	Harrapa, India, 204
Grodek, Poland, 76t	Harris County, Texas, 34
Gronniosaw (freed or escaped captive African), 20	Harris, Joseph, 22, 24, 24n
growth	Harris, Marvin, 23
in age estimation, 57	Harvard University, 21, 23, 26
biomechanical stress factors, test of association	keeper of American slave trade records, 20
with, 247, 252	"Harvard-Washington [Smithsonian] Axis," 26
in children 238 230	Hausa (African ethnic group) 90t

Hawaii, 79t, 105	hypolasias. See enamel hypoplasias
Herskovits, Melville, 21, 22, 23, 24, 25, 32	
Hill, M. Cassandra, 64f, 224	1
Historic Conservation and Interpretation (HCI), 3,	Ibo (African ethnic group), 76t, 106
11f, 12	Iceland, 84t
History of Negro Slavery in New York, A (1966),	Ife (African ethnic group)
153	shrine at the Cobb Laboratory entrance, 64, 65f
Hooton, Earnest, 26, 26n	See also Yoruba
House of Representatives' Subcommittee on	indentured servitude, 256, 272
Buildings and Grounds, 9	India, 92, 105. See also Andaman Islands, India;
Howard University, 3, 12, 13, 13f, 15, 21, 24, 24n,	Harappa, India
26, 27, 28, 36, 37, 45, 49, 89	inductively coupled-plasma mass spectrometry
College of Dentistry, 63	(ICP-MS), 100, 101, 102, 105, 106, 107, 108,
Department of Anatomy, 12	109, 110, 111t, 116
Department of Orthopedics, 63	infantile cortical hyperostosis, 240–241, 241t
Department of Sociology and Anthropology, 12	infants
New York African Burial Ground Project assigned	age assessment of, 57, 228
to, 13	infectious disease, evidence of, 175, 177, 177f
research design by, 13, 45, 92	low birth weight, 144
Howard University Cobb Laboratory. See W.	stature estimation, 238f
Montague Cobb Biological Anthropology	underrepresentation in archaeological cemeteries,
Laboratory	128, 132, 134
Howard University Hospital	See also mortality: infants; porotic hyperostosis
Department of Radiology, 63	infectious disease
Howells series, 76t, 77, 78, 78t, 79t	active vs. healed lesions, 175, 177
Howells, W. W., 272	in Cedar Grove cemetery, Arkansas, sample, 33
Hrdli ka, Ales, 26, 28, 76t	chemical analysis, use of, 102
Hispañola, 28	distribution by age and sex, 174–175, 175t
Hull Bay, St. Thomas, 29. See also under abscesses,	distribution by age and sex, 174–175, 175t distribution in long bones, 243t
dental; caries, dental; fractures; infectious	and enamel hypoplasias, 144
disease; periostitis	in First African Baptist Church Cemetery,
Hungary, 79t	Philadelphia, sample, 35
Huron (Native American ethnic group), 76t	in Hull Bay, St. Thomas, sample, 29
Hurst, Keisha, 54f	malnutrition, interaction with, 195–198, 196t,
Hurston, Zora Neale, 21, 22	197f, 197t
hypertrophies	in Newton Plantation, Barbados, sample, 39
age, correlation with, 214	population comparisons, 175–176, 176f, 176t, 179
and arthritis, 246t, 247t	See also inoculations, by Africans; periostitis:
biomechanical stress, as evidence of, 130, 207–	as indicator of infectious disease; treponemal
208, 215, 218–219, 218f, 220, 221, 245, 252	infections
in children, 246, 246t, 252	inoculations, by Africans, 198, 260
craniosynostosis, test of correlation, 249t	Institute for Historical Biology, College of William
definition of, 213, 214f, 217f, 218f	and Mary, 61
distribution by age and sex, 245t, 246t	Institutional Review Board (IRB), 92
and enthesopathies, 246, 246t, 247t	Integrationism, 8, 23
female and male comparison, 215, 218–219, 220,	International Congress of African Historians, 24
221	interracial marriage and miscegenation, 22, 26, 26n
and long-bone flattening, 247, 252, 253t	121, 179n, 186n
scoring methods, 213	Inuit (Native American ethnic group), 217, 219
See also musculoskeletal stress markers (MSM)	Ireland. See Irish, the
hypocalcification. See enamel hypocalcification	Irish, the, 74, 92, 272
* *	

migration to New York, 151 iron, 101, 102, 110, 116, 185, 186, 220, 240, 251. <i>See also</i> anemia: iron-deficiency	Kordofanian (language), 89 Korea, 92. <i>See also</i> Anyang, Korea
Iron Age, 26n, 76t, 105	L
isotopic analysis	Labrador (Newfoundland ethnic group), 76t
carbon, 102	Lafayette, Arkansas, 33
in diet reconstruction, 98, 102, 104–105	Landmarks Preservation Commission. See New
lead, 105	York Landmarks Preservation Commission
nitrogen, 102	laws, regulations, and ordinances
in origin and migration studies, 96, 103-105, 106,	absence of a law protecting African burial
114–117, 269–270	grounds, 9
oxygen, 96, 104–105	amendment, 1731, to 1722 law (prohibiting more
sampling process in teeth, 100–101	than 12 Africans from attending a funeral, and
strontium, 96, 103–104, 104f, 114–116, 269–270	prohibiting use of palls), 6
Italy, 76t, 92	law, 1722 (New York Common Council,
Ivory Coast, 72f	restricting burials of Africans to daylight hours), 6
J	law, 1799 (assurance of gradual emancipation), 8
Jackson, Fatimah, 16, 70, 91, 92, 272	slave trade selection, 257
Jamaica, 21, 26, 28, 39, 257	See also An Act to prevent aged and decrepit
Jamaican burial site, 28	slaves from becoming burthensome within
Japan, 79t, 81, 81f, 83f, 105	this Colony (1773); Jim Crow laws; Native
Jea, John, 5, 20	American Graves Protection and Repatriation
Jim Crow laws, 8	Act (NAGPRA)
John Milner Associates (JMA), 3, 36	lead
collaboration with Smithsonian Institution, 35	age of exposure, determining 99–100, 100f
research design by, 13, 45, 92n	culturally modified vs. unmodified teeth, levels in,
Johnson, Charles, 23	116f
Jomon. See Japan	poisoning, 38, 105, 116–117, 270
Jones, Joseph, 53f	See also isotopic analysis: lead; origin studies; trace element analysis
Jorde, Peggy King, 11f, 12	Leftist movement, 8
Journal of Negro History (1916), 21, 22	Lehman College, 7
justification of slavery and inequality, efforts toward	Liberia, 88, 92
craniometric studies, 26	life expectancy
physical anthropological justification, 25, 28	African Americans in early twentieth-century
religious justification, 5, 8	Arizona, 34
rengrous justineution, 5, 6	in Cedar Grove cemetery, Arkansas, sample, 133
K	differences between blacks and mulattoes, 34
Kalkhook Pond. See Collect Pond	in New York African Burial Ground sample,
Kelley, Jennifer, 35	136–140, 271
Kenya, 76t, 79t, 92, 107t	for females, 138t
Khoi. See Khoi San	for males, 137t
Khoi San (African ethnic group), 81, 83f, 84f, 84t,	population comparisons, 34, 136, 138f
272	in Waterloo Plantation, Suriname, sample, 37
Khudabux, Mohamad, 37, 38	life tables, 120, 134–136, 136t, 137t, 138t, 271
Kidd, Kenneth, 89	Lift Every Voice, Inc., 10
Kilimandjaro, Tanzania, 76t	Linnaeus, Carl, 25
Kingsley Plantation, Florida, 31	Loango, 108t
Kongo, 76t. See also Congo; Democratic Republic	long bones
of the Congo	in age estimation, 57

bowing, as sign of nutritional inadequacy, 171, Maravi (African ethnic group), 108t 194–195, 195t, 244–245, 245t Maresh, M. M., 229–230 flaring of metaphyses, 245, 245t maroons, 29, 39, 257 flattening, 244, 245t, 247, 252, 253t Mars, Jean Price, 21 with infantile cortical hyperostosis, 241t Martin, Debra, 34, 36 infectious lesions by long-bone element, 243t Marxism, 21, 23. See also neo-Marxism Native American comparisons, 229, 247, 249t Maryland, 35, 36, 106, 128, 219, 220t, 263, 264. See also biomechanical stress; enthesopathies; See also Catoctin Furnace ironworks, Maryland; hypertrophies; growth; platycnemia; platymeria Frederick County, Maryland Long Island, 76t Massachusetts, 76t Louisiana, 131, 220t, 271 Mauritania, 72f Lyon, City of, France, 76t Mayans, 104, 105 Mayor's Task Force on the African Burial Ground, M 9. See also Federal Advisory Steering Committee McManus, Edgar J., 153 Mack, Mark, 17, 61f Mead, Margaret, 22 Madagascar, 72f, 74 measles, 260, 261 Madinka (African ethnic group), 90t–91t Maerschalk Plan (1755), 4f Melanesia. See Oceania Memorandum of Agreement, 14 Magennis, Ann, 34, 36 Metropolitan Forensic Anthropology Team Maine, 76t (MFAT), 7, 12, 27, 37. *See also* excavation of Mali, 76t, 79t, 88. See also African sources of the New York African Burial Ground; forensic enslaved labor: Mali anthropology; New York African Burial Ground Malik Shabazz Human Rights Institute, 10 Project: research design: rejection of, submitted malnutrition by the Historic Conservation and Interpretation in Cedar Grove cemetery, Arkansas, sample, 33 and Metropolitan Forensics Anthropology Team and craniosynostosis, 247 Mexico, 38n, 73f, 102, 104 and dental defects, 36, 143, 270 Meza, Abigail, 38n in First African Baptist Church Cemetery, Philadelphia, sample, 35 Micronesia. See Oceania Middle Passage, 32, 150, 154, 269 in Harney Site Slave Cemetery, Montserrat, migration of Africans, 271 sample, 39 forced, 120, 126, 150, 156, 172, 262, 264, 270 and hypercementosis, 38, 39, 96 in search of jobs in New York, 8 interaction with infectious disease, 195-198, 196t, voluntary, 120, 125, 126 197f, 176t See also isotopic analysis: in origin and migration in Newton Plantation, Barbados, sample, 38 studies; trade in enslaved Africans in South Carolina plantation, 34 migration studies. See origin studies See also enamel hypoplasia; long bones: bowing, Mintz, Sidney, 23 as sign of nutritional inadequacy; porotic miscegenation. See interracial marriage and hyperostosis miscegenation Makua (African ethnic group), 108t Mokapu, 79t Manhattan, 3, 5f, 42, 76t, 114, 115, 117, 263, 270 Monongahela (Native American ethnic group), 249t Manhattan Island, 3 Monte Alban, 104 manumission, 8, 31, 33, 257, 263 Montserrat, 39. See also Harney Slave Site conversion to Christianity in exchange for, 5 Cemetery, Montserrat in exchange for British military service, 8 Moriori, 79t females and children, proposal for, 264 Morocco, 88. See also African sources of enslaved legal freedom, 124, 255, 257 labor: Morocco purchase of, 151 Morrant (freed or escaped captive African), 20 See also laws, regulations, and ordinances: law, mortality rates 1799 (assurance of gradual emancipation) in adults, 121, 122f, 262 Maori (Polynesian ethnic group), 79t

assessment of, 120 National Historic Preservation Act of 1966, 3, 12, in Catoctin Furnace ironworks, Maryland, sample, 30, 33, 39n, 43 Section 106, 3, 9 National Institute for Standards and Technology in Cedar Grove cemetery, Arkansas, sample, 33, 133, 135t (NIST), 110 National Institutes of Health (NIH), 91, 93t in colonial America, 260–261 female and male comparison, 121, 123f, 123t, National Park Service (NPS), 10 137t, 138t, 139, 262, 263 National Register of Historic Places (NRHP), 33 in First African Baptist Church Cemetery, National Research Council Committee on the Philadelphia, sample, 35, 133, 135t Negro, 26 in infants, 38–39, 119, 121, 122f, 128, 130, 131, National Science Foundation (NSF), 93t, 118 133, 134, 135t, 136, 139, 260, 262, 263, 270 Native American Graves Protection and Repatriation Act (NAGPRA), 9, 12, 33, 43 in Newton Plantation, Barbados, sample, 38, 39, 131 Native American Rights Fund, 12, 33 population comparisons, 126–133, 129f, 130f, Native Americans, 9, 25, 33, 70, 204, 272 130t, 131f, 134, 135t, 139, 270–271 admixture with Africans and Europeans, 74, 256 archaic populations, 249t in Site 33CH778, South Carolina, sample, 132– cohabitation between African and Native in St. Peter Street Cemetery, New Orleans, American groups, 30, 35, 71 sample, 131–132 comparison with African, European and other burial populations, 29, 70, 71, 74, 76t, 78f, 81, in subadults, 121, 122f, 124, 124t, 130t, 131f, 134, 81f, 83f, 88, 93t, 249t 135t, 139–140, 262, 263, 264 in Waterloo Plantation, Suriname, sample, 37 efforts to control the disposition of skeletal See also Trinity Anglican Church: mortality data, remains and sacred objects, 33 as a source for efforts toward the reburial of excavated remains, Morton, Samuel, 20, 25, 26 Mota, Arturo, 38n investigations of, by physical anthropologists, 28, Mount Pleasant Plains, 39n 28n Moynihan, Senator Daniel, 32 investigations of, by Spanish Catholics, 20 See also Alaskan natives; Arawak; Buffalo; Mozambique, 72f, 92, 107t "mulattoes," 26n. See also life expectancy: burial population of the New York African differences between blacks and mulattoes Burial Ground: possible Native American Murray, Robert, 89 burials; Delaware (ethnic group); Eskimo; Huron; Inuit; Labrador; long bones: Mayans; musculoskeletal stress markers (MSM), 220t Native American comparisons; Monongahela; definition of, 213 Nanticoke-Moors; Native American Graves distribution by age and sex, 215, 215t Protection and Repatriation Act (NAGPRA); distribution by skeletal element, 216t Native American Rights Fund; Pearson; Plains See also enthesopathies; hypertrophies Indians: Seneca; Sunwatch Myrdal, Gunnar, 23, 24 Ndumbe, Peter, 91 "Myth of the Negro Past," 22, 23, 24, 25, 32 Negritude movement, 21 Negro Family in America: The Case for National Action, The (1965), 32 Namibia, 108t Negro History Week, 21 Nanticoke-Moors (Native American ethnic group), neo-Marxism, 41. See also Marxism Nepal, South Asia, 92 National African DNA bank, 89, 91 Netherlands, 84t, 85 National Association for the Advancement of New Amsterdam, 71, 224f Colored People (NAACP), 21, 27 New Calabar. See under African sources of National Center for Health Statistics, 231, 231n enslaved labor National Historic Landmark, 10, 44

New Guinea, 77, 79t, 81f, 83f, 105. See also redrafting by Michael Blakey and research team, Oceania New Jersey, 91, 255 response to the review of, by the General Services "New Negro", 8, 23 Administration, 14 New Netherlands, 126 review by the Advisory Council on Historic New Orleans, 130, 131, 133, 199, 220–221, 220t, Preservation, 14 226. See also St. Peter Street Cemetery, New subjective approaches to archaeological data, 10 Orleans topics of interest to the public, 13, 16, 43 Newton Plantation, Barbados, 117, 132t, 133, 134t, cultural backgrounds and origins, 43, 46, 108 147, 174t, 185n, 271. See also under enamel quality of life brought about by enslavement, 43, hypoplasias; infectious disease; malnutrition; mortality rates; syphilis modes of resistance to enslavement, 43, 46 New Wave Research, 101 transformation from African to African American New York African Burial Ground, 132t identities, 43, 46 boundaries of excavated areas, 3 See also African American bioarchaeology: awareness toward, as a result of the New York colonial African experiences, as a source for, 108 location, 3, 4f African Burial Ground Project: African history: "rediscovery" of, 3, 8, 96 critical and corrective approaches to: as a guide for New York African Burial Ground research; See also African Burial Ground; burial population of the New York African Burial Ground: DNA: Howard University: New York African Burial West and Central Africa, as a source of New Project assigned to; origin studies: research goal York African Burial Ground genetic diversity; of the project; public engagement with the New forensic anthropology: in the New York African York African Burial Ground; racial focus in past Burial Ground; life expectancy: in New York studies: in the approach to the New York African African Burial Ground sample; New York Burial Ground; Sankofa Conferences African Burial Ground Project New York City, 3, 71, 126, 220 New York African Burial Ground Project economy of, 265, 266f, 267 accusations of "reverse discrimination," 14 in the eighteenth century, 3, 5, 80, 119, 120, 151, alternative research approaches to, 10–11, 12, 13–14, 153, 197, 227 15 history of, 46, 85 funding for, 15-16, 17, 45, 117 See also enslaved Africans in New York; New future studies, 16, 117, 234, 264–265 York County; population counts: in New York goals of, 13-14 New York County, 257, 259t. See also population inclusion of African American and African counts: in New York County Diaspora expertise, 10, 12, 13, 14, 41–42, 46–47 New York Landmarks Preservation Commission, inclusion of African American students' expertise, 4f, 9, 14. See also excavation of the New York African Burial Ground: requests to end; interdisciplinary dialogue as a result of data Memorandum of Agreement sharing, 16, 41 (see also Sankofa Conferences) Ngu, Victor, 91 multidisciplinary expertise, 45–46, 47 Ngumbi, 108t objective approaches to archaeological data, 11, Nguni (African ethnic group), 76t Niger, 88, 90t-91t. See also African sources of opposition and criticism toward the approaches of, enslaved labor: Niger 11, 14 Nigeria, 76t, 84t, 88, 90t–91t, 92 research design, 10, 17, 30, 42, 43 geology of, 103 absence of, 9 See also African sources of enslaved labor: Nigeria accusations of ethnocentric perspectives, 14–15 rejection of, submitted by the Historic Niger River, 72f Conservation and Interpretation and Niger Valley Exploring Party, 21 Metropolitan Forensics Anthropology Team, Nile Valley 12

focal point for African bioarchaeological studies, Old Calabar. See under African sources of enslaved 25-26, 26n See also Egypt; Nubia origin studies, 26n Nkwi, Paul, 91 by craniometric data, 28, 73, 74–80, 77f, 78f, 83f, Norse, Norway, 76t, 79t 84f North America, 37–38, 80, 81, 83f, 106, 117, database limitations, 70–71, 89 by dental traits, 73-74, 80-85, 81f 185, 265, 272. See also African Burial Ground: eighteenth-century North American historical by elemental signature analyses, 102-103, 106evidence, as a source for; burial population of the 107, 109–112, 113f New York African Burial Ground: eighteenthindicating birth in Africa, 17, 147, 149, 151, 153, century North American historical evidence, as a 156, 264, 270 source for; enslaved Africans in North America indicating birth in the Caribbean, 185 North Carolina, 23, 35, 106 indicating birth in New York, 97, 114, 152, 154, Northeastern University, 31 264, 269, 270 Northwestern University, 22, 23, 24n, 28 by isotopic analyses, 96, 103–105, 114–115, 115f establishment of an African Studies program, 21 by molecular genetics, 69–70, 74, 85–89, 90–91t, 155 See also Herskovits, Melville Norway, 76t, 79t, 84t research goal of the project, 43, 69, 93t, 95 See also culturally modified teeth: African birth, Nott, Josia, 20, 25 Nova Scotia as possible reason for; DNA: mtDNA: African relocation of enslaved Africans to, 8 origins, test of; isotopic analysis: in origin and Nubia, 25, 81, 84t migration studies; New York African Burial nursing, 102, 104. See also weaning Ground Project: topics of interest to the public: nutrition cultural backgrounds and origins; runaway as a measure of quality of life, 29, 32, 33–37, 36n, advertisements: references to African birth in 98, 157, 161, 166, 265 the form of cultural attributes methods used to assess nutritional status Orleans University, 89 (see elemental signature analysis; enamel Ortiz, Fernando, 21, 29 hypoplasias; isotopic analysis) osteoarthritis skeletal indicators (see craniosynostosis; cribra in age estimation, 57–59 orbitalia; long bones: bowing, as sign of in appendicular skeleton, 208, 209f, 209t, 210f, nutritional inadequacy; porotic hyperostosis) 210t, 211f, 212f, 213f See also anemia; diet; growth; infectious disease; causes, 199, 203, 211–212 malnutrition; rickets; scurvy; stature definition of, 201f Nwokeji, Ugo, 91 eburnation, 57, 200 Nyumburu Cultural Center, University of female and male comparison, 201, 201t, 208–209, Massachusetts, 93t 209t, 210t, 211, 213, 213f, 246t in First African Baptist Church Cemetery, Philadelphia, sample, 35 osteophytosis, correlation with, 203, 204 Oakland Cemetery, Georgia, 132t population comparisons, 220-221 Oaxaca, 38n, 104 scoring methods, 200 Oaxaca sugar plantation cemetery, 38n. See also in vertebrae, 200–204, 201f, 202f, 203f, 208t burial sites in Central America See also biomechanical stress; degenerative Oceania, 81f, 83f, 105. See also Australia; New changes Guinea osteomyelitis, 34, 179, 181f Occupational Safety and Health Administration osteophytosis (OSHA), 49 odontoblasts, 98, 99t causes, 203, 204 definition of, 200, 201f, 203f Office of Public Education and Information (OPEI), female and male comparison, 201, 202t, 204 18, 126, 261 scoring methods, 200 Ohio River Valley, 247

by vertebral region, 200-204, 201f, 203f, 208t	
Ovambo (African ethnic group), 76t	Philadelphia Commuter Rail tunnel, 133 Philadelphia First African Baptist Church
Owampo (African ethnic group), 108t Oxford University, 28	Cemetery. See First African Baptist Church (FABC) Cemetery
n	Philadelphia Negro, The (1899), 21
P :: 1 1 1 12	Philippines, 79t, 105
Pacific Islanders, 43	Phylon, 22 physical anthropology of Africans, 25–28,
Pacquet Real (Portuguese brig), 26n Pakistan, 92	37. See also Cobb, W. Montague; Hooton,
paleodemography, 28, 119, 126, 262, 263, 265	Earnest; Hrdlička, Aleš; Native Americans:
critiques of, 120–121	investigations of, by physical anthropologists;
definition, 120	racial classification and ranking: in physical
limitations and problems in, 120–121	anthropology; racial focus in past studies: in
political economy, its effect on, 139	physical anthropology
See also age determination; life expectancy;	"Piezas de India," 120. See also trade in enslaved
mortality; sex determination; sex ratio	Africans: by the Spanish
paleoepidemiology, 26, 28n	Pigmies. See Pygmies
paleopathology, 24–25, 26, 28, 28n, 170, 172, 264	Pinkster Day, 6
Paleopathology Association, 61, 169	pinta, 183
palisade wall of New Amsterdam/New York, 3, 4f	Plains Indians, 79t
Pan-Africanism, 8, 21, 24. See also African history:	platycnemia, 110, 182, 244
critical and corrective approaches to: by the	platymeria, 244
Pan-Africanist movement; Congress of the Pan-	Poland, 76t
African Association for Prehistory and Related	Polynesia. See Oceania
Studies	population counts of Africans in colonial states, 263–264
Paris, France, 21	decline of, 8, 258, 261
Parrington, Michael, 11f, 35, 36 Paynter, Robert, 36	during post-Revolutionary War, 8
Pearson, 249t	free Africans, 124, 125t, 255, 261t
Pecos Pueblo study (1930), 26	growth as a function of im portation, 34, 258, 263
Peculiar Institution, The (1956), 32	in New York, 8, 70, 127t, 258, 258t, 261, 263,
Pennsylvania, 151	264, 267, 270
Pennsylvania State University, 89	in New York County, 125, 125t, 261t, 263
periostitis	rise of, 8, 124, 263
definition of, 171f, 172f, 174	in Texas, 34
distribution by age and sex, 176f, 177f, 178f, 179f	undercounts, 120, 126, 260
in Harney Site Slave Cemetery, Montserrat,	See also sex ratio
sample, 39	population counts of Euroamericans
in Hull Bay, St. Thomas, sample, 29	in New York, 263, 270
as indicator of infection, 174–180	in New York County, 125, 125t, 261t
population comparisons, 175–176, 176f, 178,	undercounts, 126
178f, 180f, 197f, 197t	porotic hyperostosis
porotic hyperostosis, co-occurrence with, 171,	active lesions, 186, 188t, 192, 251
195–198, 196t	causes, 185–186 definition of, 63f, 185, 187f, 188f
in subadults, 177–178, 177f	distribution by age and sex, 188t, 192f, 193–194,
See also infectious disease; treponemal infections Peru, 73f, 79t, 92	193f, 194f
Philadelphia, 36, 130, 133, 147, 149, 198, 260, 263	growth, test for effect on, 240–242, 242t
African community in, 151	healed lesions, 186, 188t
See also First African Baptist Church (FABC)	infantile cortical hyperostosis, co-occurrence with,
Cemetery	241, 241t

and iron deficiency, 102, 185 topics of concern to the public (see under New nutritional inadequacy, 170, 185-186, 240, 265 York African Burial Ground Project) periostitis, co-occurrence with, 171, 195–198, See also descendant community; excavation of the 196t, 197t New York African Burial Ground: requests to population comparisons, 186, 190f, 191t, 192end 195, 193f, 194f, 196, 197f, 197t, 198 Public Law 103-393, 10 Pygmies (African ethnic group), 84t, 272 recording, 63f, 185 and rickets, 185-186 and scurvy, 185-186 R in subadults, 186–188, 192f race estimation. See forensic anthropology; racial See also cribra orbitalia classification and ranking Portugal, 21, 74. See also Pacquet Real racial classification and ranking, 26, 28, 28n, 272 Posnansky, Merrick, 31n biological research on mixed-race families, 26n post-Columbian period, 25 characteristic of European studies, 25 postexcavation in craniometrics, 28, 75 (see also Types of cleaning and reconstruction, 52–54, 53f, 64 Mankind) facilities, 49, 50f eugenic research on miscegenation, 26 laboratory organization, 49, 52–53 in forensic anthropology, 11, 12, 20, 26-27, 28n, researchers (see General Services Administration [GSA]; Howard University Cobb Laboratory; invalidation of, 27, 231, 271 John Milner Associates [JMA]; Metropolitan as a justification for racial inequality, 27 Forensic Anthropology Team [MFAT]) in physical anthropology, 25–27, 28 postmodernism, 41 See also African history: New York African pottery, 6, 29, 39 Burial Ground Project: objective approaches to pre-Columbian period, 28 archaeological data Presence Africaine, 21, 26n racial focus in past studies, 24, 25, 28, 29, 31–32, public engagement with the New York African 40, 40n Burial Ground Project, 13, 15, 19, 20, 272 in craniometrics, 69 as a guide for research, 41 Euroamerican racial reductionism, 20-21, 40, 42 descendant community as an ethical client, 43, 45, French racial reductionism, 21 as a means of dehumanizing and dehistoricizing determination of the New York African Burial African groups, 27 Ground disposition, 9, 12, 43 as a means of justifying colonialism, segregation, choice of language, 44 eugenics, class, and gender inequity, 25 demand for proper memorialization of and Mount Pleasant Plains study, 39n information about the burial population, 3, 8, in physical anthropology, 25–27, 28, 29, 37 44, 45 on West Indian plantations, 39 expansion of temporal analysis, 44 research on racial and anatomical bases for crime, inclusion of African and Caribbean research, 44, 26n See also African history; New York African interpretive center for the site, 44, 45 Burial Ground Project: objective approaches to methodological techniques applied to the New archaeological data York African Burial Ground, 44 Radcliffe College, 26n reinterment of burials and artifacts, 45 Rankin-Hill, Lesley, 17, 20, 23, 32, 35, 36, 118, 251 rejection and support of forensic approaches Rathbun, Ted, 17, 34, 34n, 35, 36n, 117, 147, 220 toward race determination, 45 Reade Street, 3 General Services Administration (GSA) as a Red River, Arkansas, 33, 133 business client, 43, 45 reinterment of remains, 130 objections to, 43 at Cedar Grove Cemetery, Arkansas, 33, 132t social conflicts, in regards to responsibility of at First African Baptist Church Cemetery, enslavement, 43–44 Philadelphia, 132t

at Newton Plantation, Barbados, 132t	S
at Oakland Cemetery, Georgia, 132t	saber shin, 38, 179, 180, 180n, 182, 182f, 182t, 184
at the New York African Burial Ground, 10, 13,	San. See Khoi San
45, 61, 64, 132t	Sankofa Conferences, 16, 47
at Site 38CH778, South Carolina, 132t, 133	Sankofa symbol, 46, 110
at St. Catherine's Island, Georgia, burial site, 30	Santa Cruz, 79t
at St. Peter's Cemetery, New Orleans, 132t	Savage, Augustus, 9, 10, 12
reinterment of First African Baptist Church	Schmorl's nodes, 206f
remains at Eden Cemetery, 35	by age, 207t
See also Rites of Ancestral Return	causes, 204
Relations and Duties of the Free Colored Men in	definition of, 204
America and Africa, The (1861), 21	with degenerative changes, 208t
Remley Plantation, South Carolina, 166t	distribution in spine, 204, 206t, 207t
research design. See under New York African	female and male comparison, 204
Burial Ground Project	with spondylolsis, 207
resistance to enslavement, 13, 31, 43, 44, 45, 226,	in young adults, 206, 220, 221
269	Schomburg Center for Research in Black History
assertion of humanity as a form of, 5	and Culture, 12
maintenance of African cultural practices, 106	Science, 97
disrupting production labor, 106	Scotland, 74, 92
by working slowly, 106	Scots. See Scotland
See also revolts by Africans	scurvy, 195, 240
revolts	in Cedar Grove cemetery, Arkansas, sample, 33
political upheaval, 126, 139, 159, 259	as possible cause of porotic hyperostosis, 185–186
See also Doctors' Riot	Sea Islands, Georgia, 30
revolts by Africans, 6, 259, 264, 269. <i>See also</i> 1712	Section 106. See under National Historic
Uprising; 1741 Uprising	Preservation Act of 1966
Revolutionary War, 8, 126, 255, 258	Seneca (Native American ethnic group), 271
participation of Africans in military forces, 8, 166t	Seneca Village, New York, 263
See also manumission: in exchange for British	Senegal, 76t, 88, 90t–91t, 92, 107t. See also African
military service; population counts of Africans:	sources of enslaved labor: Senegal
during post-Revolutionary War Rhode Island, 76t	Senegal River, 72f
rickets, 164, 171, 240	Senegambia, 84t, 89, 92. See also African sources
bowed lower limbs, possible evidence for, 194–	of enslaved labor: Senegambia
195, 244	1712 Uprising, 3, 6, 153, 256, 258. <i>See also</i>
in Cedar Grove cemetery, Arkansas, sample, 33	executions: as a result of the 1712 Uprising;
population comparisons, 195	revolts by Africans
as possible cause of porotic hyperostosis, 185–186	1741 Uprising, 153, 256, 258. <i>See also</i> revolts by Africans
Rites of Ancestral Return, 64	Seville Plantation, Jamaica, 39
Rochester Poorhouse, New York, 166t	sex determination, 55, 56f, 70
Roe, Robert, 9	sex ratio
Rose, Jerome, 33, 34, 35, 36, 136	in African populations, colonial New York, 259f,
Roumain, Jacques, 21. See also Negritude	259t
movement	definition of, 125
runaway advertisements, 261	in enslaved populations, 38, 126, 128t
references to African birth in the form of cultural	trade in African captives, its effect on, 256–259,
attributes, 106	259f, 259t, 264
See also culturally modified teeth: in runaway	Sharpe, John
advertisements as a descriptor	commentary of African burial practices, 3, 6
runaways 20 35 106 108 151 261	Shilstone F. M. 28

Siberia, 79t, 81, 81f, 83f spondylolysis, 206–208, 207f, 208t sickle cell anemia. See under anemia Standards for Data Collection from Human Sierra Leone, 8, 88, 107t. See also African sources Remains, 13, 54, 60, 61, 63, 145, 157, 169, 170, of enslaved labor: Sierra Leone 185, 228 Singleton, Theresa, 31, 31n, 32 Stanford University, 24 Site 38CH778, South Carolina, 132t, 134t, 147, Staten Island, 79t 170, 171, 174t. See also mortality rates: in Site State of Bahia-Columbia University Community 38CH778, South Carolina, sample; periostitis: Study Project, 23 population comparisons; porotic hyperostosis: Statistical Package for Social Sciences (SPSS), 75, population comparisons 77, 80, 110, 133, 145, 228, 234 Site 2-AVI-1-ENS-1, Hull Bay, St. Thomas, 29 stature Skinner, Elliot, 24 compared to CDC growth standards, 237–239, slavery. See enslaved labor slave trade. See trade in enslaved Africans; enthesopathies, test of association with, 247 transatlantic trade female stature estimates, 237f, 239t smallpox, 198, 260-261 infectious lesions, test of association with, 244t Smithsonian Institution, 26, 28, 29, 30, 31, 33, 36, male stature estimates, 237f, 239t 132t methods to estimate, 231t, 232t, 233t, 234t, 237f, collaboration with John Milner Associates, 35 Physical Anthropology Division, 37 population comparisons, 249t, 250–251, 250f, Smithsonian's National Zoological Park, 39n 251f, 252f Society of African Culture, 21 porotic hyperostosis, test of association with, Society for the Preservation of the Gospel, 261 240-242, 242t, 251 Sotho (African ethnic group), 84t See also growth: standardization of long-bone Souls of Black Folk, The (1903), 23 lengths South Africa, 75, 84t, 93t, 107, 204 St. Catherine's Island, Georgia, burial site, 30. See population comparisons, 76t, 77f, 79t, 80-81, 81f, also under fractures; reinterment of remains; 83f, 84f, 85 trauma See also Benin; Cameroon; Cape Province, South Steering Committee. See Federal Advisory Steering Africa; Cape Town, South Africa; Congo; Committee Pygmy; Sotho; Tukulor Steggerda, Morris, 26 South America, 19, 73f, 81, 92. See also burial sites stellate scars, 38, 180, 183, 184, 184f, 185 in South America; trade in enslaved Africans: Stewart, T. Dale, 28 South American export sites; Suriname St. Peter Street Cemetery, New Orleans, 34, 35, South Carolina, 17, 35, 106, 166t, 220, 221, 226, 131, 132t, 174t. See also mortality rates: in St. 263, 271. See also Belleview Plantation, South Peter Street Cemetery, New Orleans, sample Carolina; Charleston, South Carolina; Site stress. See biomechanical stress 38CH778, South Carolina; Remley Plantation, St. Thomas, 28, 29. See also Hull Bay, St. Thomas; South Carolina; South Carolina plantation U.S. Virgin Islands; Water Island, St. Thomas South Carolina plantation, 128, 132, 133, 220t. Study of Some Negro-White Families in America, A See also anemia: on South Carolina plantation; (1932), 26n growth: in South Carolina plantation sample; Sudan, 84t, 107t malnutrition: in South Carolina plantation sugar Spain. See Spanish, the industry, 38, 105, 262 Spaniards. See Spanish, the plantations, 37, 125, 131, 271 Spanish, the, 74, 92, 131. See also African Diaspora See also Barbadian sugar plantation; Newton studies: development and evolution of; enslaved Plantation, Barbados; Oaxaca sugar plantation Africans in the Caribbean: investigations of, cemetery by Spanish Catholics; Native Americans: Sunwatch (Native American ethnic group), 249t investigations of, by Spanish Catholics; trade in Suriname, 37, 106, 198 enslaved Africans: by the Spanish economic development of, 38

See also Waterloo Plantation, Suriname	factors that affected, 256	
Sweden, 79t	groups most active in, 74	
Swedlund, Alan, 36	to New York, 124, 149, 153, 154, 156, 184, 255,	
Switzerland, 76t	263, 264	
syphilis	sex selection, 257	
congenital, 38, 179, 183–185	shipment regions from which captives were	
eighteenth-century New York compared to	acquired, 70–71, 88	
Caribbean, 270	smuggling and underreporting of cargo, 120, 255	
endemic, 183, 198	South American export sites, 73f	
in Newton Plantation, Barbados, sample, 38	by the Spanish, 120, 153	
resorptive lesions, skeletal evidence of, 184f	See also African sources of enslaved labor;	
venereal, 38, 180, 183–185, 198	Caribbean, the: as intermediary between Africa	
in Waterloo Plantation, Suriname, sample, 38,	and New York; Harvard University: keeper of	
170, 198	American slave trade records; justification of	
See also saber shin; stellate scars; treponemal	slavery and inequality, efforts toward: religious	
infections	justification; trade in enslaved Africans;	
Syracuse University, 31, 118	laws, regulations, and ordinances: slave trade	
Szwed, John, 23	selection; Middle Passage; "Piezas de India";	
	sex ratio: trade in African captives, its effect on;	
T	West Indian sources of enslaved labor	
Tabasi, Adunni, 44	transatlantic trade. See trade in enslaved Africans	
Taino. See Arawak (Taino; Caribbean ethnic group)	trauma	
Tanzania, 24, 84t, 92, 107t	burning at stake, possible evidence for, 6, 6f (see	
Tasmania, 79t	also Burial 137; Burial 354)	
Tattersall, Ian, 78, 271	in Catoctin Furnace ironworks, Maryland, sample,	
Teita, Kenya, 76t, 79t	35	
Tellem, 76t	in Cedar Grove Cemetery, Arkansas, 33	
Teotihuacán, 104	dislocation, 221–222	
Tetela, 76t	in First African Baptist Church Cemetery,	
Texas, 166t. See also population counts of Africans:	Philadelphia, sample, 35	
in Texas	gunshot, 224–226, 225f	
Thomas, David Hurst, 30	patterns of, 121, 130–131	
Thomas, R. Brooke, 36	osteoarthritis, a result of, 199, 212, 213	
Ties That Bind Ceremony, 13f	periostitis, a result of, 174, 174n	
Time on the Cross (1974), 32	in St. Catherine's Island, Georgia, sample, 30	
Todd, T. Wingate, 27, 28	violence, evidence of, 30, 33, 35, 222, 224–226,	
Togo, West Africa, 72f, 76t, 84t, 107t	225f	
Tolai (New Guinea ethnic group), 77, 79t	See also fractures	
tooth loss. See antemortem tooth loss	treponemal infections, 179	
Tories, 8	differential diagnoses, difficulty in, 183-185, 198	
trace element analysis. See bone chemistry analysis;	distribution by age and sex, 182-183, 182t, 183t	
elemental signature analysis (ESA)	periostitis, as expression of, 174	
trade in enslaved Africans, 38, 71, 106, 120, 150,	sex ratio as factor, 38	
154, 256, 271, 272	tibial pathologies, 182t	
African suppliers of captives, 44	in Waterloo Plantation, Suriname, sample, 38, 185	
age selection in, 257	See also syphilis; yaws	
by the British, 20, 153, 256	Trinity Anglican Church, 5f	
Central American export sites, 73f	ban on African, Jewish, and Catholic burials	
direct trade with Africa, 124, 153, 184–185, 255,	within (1697), 3, 5	
256, 264	burial population of, 126	
by the Dutch, 126, 256		

burial records for English slaveholding U.S. National Museum, 28 population, 39, 273 U.S. Virgin Islands, 28. See also Hull Bay, St. Thomas; St. Thomas; Water Island, St. Thomas mortality data, as a source for, 126–127, 128, 129f, 130f, 130t, 131f, 139 Tukulor (African ethnic group), 84t 290 Broadway site, 3 Valais, Switzerland, 76t halt of construction, 3, 10 Van Borsum patent heirs Types of Mankind (1854), 25. See also Douglass, restoration to and division of the New York Frederick: counterargument to racial ranking African Burial Ground into lots, 7 presented in Types of Mankind Van Cortlandt, Jacobus, 257 Vermillion Accords of the World Archaeological U Congress, 12 Uganda, 107t vindicationism. See African history: critical and United Nations Educational, Scientific, and Cultural corrective approaches to Organization (UNESCO), 24 violence, 26n, 29n "Route of the Slaves" Project, 91 interpersonal, 121, 127, 224, 226, 271 Statement on Race (1951), 25 See also fractures: violence, as evidence of; United Nations Human Rights Commission, 10 trauma: violence, evidence of United Nations World Heritage Site list, 10 Virginia, 35, 36, 106, 117, 219, 220t, 263 United States, 10, 14, 21, 23, 25, 37, 38n, 73f, 92, Virgin Islands, 105, 108t 117. See also African Diaspora studies: outside of the United States; Americas W United States National Monument, 10 Universal Negro Improvement Association, 21 Walker, Doug, 101, 118 University Biohazards Committee, 52 Warner, W. Lloyd, 23 University Museum at Oxford, 28 Washington, D. C., 39n, 91 University of Arkansas, 33 Water Island, St. Thomas, 28. See also antemortem University of Capetown, 26n tooth loss: in Water Island, St. Thomas, sample; University of Chicago, 22, 23, 26n culturally modified teeth: in Water Island, St. University of Connecticut, 91 Thomas, remains; St. Thomas; U.S. Virgin University of Kansas, 89, 101, 114, 118 Islands University of Kuwait, 37 Waterloo Plantation, Suriname, 37, 38, 170, 174t, University of Leiden, 37 185. See also under life expectancy; mortality University of Maryland, 89, 92, 272 rates; syphilis; treponemal infections University of Massachusetts, 33, 36, 37, 93t. See Watkins, Mark Hannah, 23 also David C. Driskell Center for Diaspora Watters, David, 39 Studies; Nyumburu Cultural Center weaning University of Mississippi, 31 stress at, 36n, 134, 162, 178, 265, 270 University of North Carolina, 114 and enamel hypoplasias, 153 University of Pittsburgh, 89 time of, determining, 101, 104 University of South Carolina, 34, 118 See also nursing University of Suriname, 37 Weiss, Kenneth, 89, 134, 135, 136 University of Tennessee, 37, 39 West Africa, 8, 74, 76t, 77f, 81f, 83f, 84f, 84t, 104, University of Yaounde I Medical School, 91 269 Upper Guinea, 92. See also African sources of geology of, 103 enslaved labor: Upper Guinea; Guinea; Guinea-See also African sources of enslaved labor: West Bissau; Gulf of Guinea Africa; Central Africa; DNA: West and Central U.S. Army Corps of Engineers, 33, 133 Africa, as a source of New York African Burial U.S. Congress, 3, 33 Ground genetic diversity; West Central Africa U.S. Department of Health and Human Services,

213n

West Central Africa, 90t–91t, 269. *See also* African sources of enslaved labor: West Central Africa; Central Africa; Gabon; West Africa

West Indian sources of enslaved labor, 258, 263, 264

Caribbean, 73f, 124, 153, 255, 256

See also African sources of enslaved labor; trade in enslaved Africans; Caribbean, the: as intermediary between Africa and New York

West Indies, 39, 219, 260, 262, 271. See also
British, the: occupation of West Indian islands;
Caribbean, the; Dominica; enslaved Africans in
the Caribbean; French West Indies; Hispañola;
Jamaica; racial focus in past studies: on West
Indian plantations; West Indian sources of
enslaved labor

Western Sahara, 72f

Whitten, Norman, 23

Wilson, Sherrill, 9, 44

Windward Coast. *See under* African sources of enslaved labor

W. Montague Cobb Biological Anthropology Laboratory, 13, 61, 63, 65 analysis of skeletal remains, 3, 36, 36n, 169 personnel, 49–50, 51, 51f, 52, 52f, 53, 61f, 64f skeletal recordation conducted at, 49 transfer of remains to, 13, 13f (*see also* Ties That Bind Ceremony)

See also Blakey, Michael; Edwards, Jerome Otto; Fuller, Douglas; Hill, M. Cassandra; Jones, Joseph; Mack, Mark

Woodson, Carter G., 21, 26. See also *Journal of Negro History*Workshop of European Anthropologists, 37
World Archaeological Congress, 12
Ethical Statement, 43

X

X Coloquio Internacional de Antropología Física, 38n

Xhosa (African ethnic group), 76t

Y

Yale University, 89
Yao (ethnic group), 108t
Yaounde, Cameroon, 91
yaws, 38, 110, 179–180, 183–185, 183n, 198
yellow fever, 34, 260, 261
Yoruba (African ethnic group), 37, 64, 90t, 271. See
also Ife

Z

Zaire, 72f
Zalavar, Hungary, 79t
Zambia, 107t, 204, 208
Zande, Kongo, 76t
Zimbabwe, 107t
Zulu (African ethnic group), 76t, 79t

